Copied to
clipboard

G = SD16×D11order 352 = 25·11

Direct product of SD16 and D11

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD16×D11, C85D22, Q81D22, C885C22, D4.2D22, D22.13D4, C44.4C23, Dic11.4D4, D44.2C22, Dic222C22, (D4×D11).C2, (C8×D11)⋊4C2, C11⋊C86C22, Q8⋊D111C2, (Q8×D11)⋊1C2, C8⋊D115C2, C112(C2×SD16), D4.D113C2, C22.30(C2×D4), C2.18(D4×D11), (C11×SD16)⋊3C2, (Q8×C11)⋊1C22, C4.4(C22×D11), (C4×D11).9C22, (D4×C11).2C22, SmallGroup(352,108)

Series: Derived Chief Lower central Upper central

C1C44 — SD16×D11
C1C11C22C44C4×D11D4×D11 — SD16×D11
C11C22C44 — SD16×D11
C1C2C4SD16

Generators and relations for SD16×D11
 G = < a,b,c,d | a8=b2=c11=d2=1, bab=a3, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 498 in 68 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, C11, C2×C8, SD16, SD16, C2×D4, C2×Q8, D11, D11, C22, C22, C2×SD16, Dic11, Dic11, C44, C44, D22, D22, C2×C22, C11⋊C8, C88, Dic22, Dic22, C4×D11, C4×D11, D44, C11⋊D4, D4×C11, Q8×C11, C22×D11, C8×D11, C8⋊D11, D4.D11, Q8⋊D11, C11×SD16, D4×D11, Q8×D11, SD16×D11
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, D11, C2×SD16, D22, C22×D11, D4×D11, SD16×D11

Smallest permutation representation of SD16×D11
On 88 points
Generators in S88
(1 87 32 65 21 76 43 54)(2 88 33 66 22 77 44 55)(3 78 23 56 12 67 34 45)(4 79 24 57 13 68 35 46)(5 80 25 58 14 69 36 47)(6 81 26 59 15 70 37 48)(7 82 27 60 16 71 38 49)(8 83 28 61 17 72 39 50)(9 84 29 62 18 73 40 51)(10 85 30 63 19 74 41 52)(11 86 31 64 20 75 42 53)
(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 22)(11 21)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 44)(31 43)(32 42)(33 41)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(52 66)(53 65)(54 64)(55 63)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 88)(75 87)(76 86)(77 85)

G:=sub<Sym(88)| (1,87,32,65,21,76,43,54)(2,88,33,66,22,77,44,55)(3,78,23,56,12,67,34,45)(4,79,24,57,13,68,35,46)(5,80,25,58,14,69,36,47)(6,81,26,59,15,70,37,48)(7,82,27,60,16,71,38,49)(8,83,28,61,17,72,39,50)(9,84,29,62,18,73,40,51)(10,85,30,63,19,74,41,52)(11,86,31,64,20,75,42,53), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85)>;

G:=Group( (1,87,32,65,21,76,43,54)(2,88,33,66,22,77,44,55)(3,78,23,56,12,67,34,45)(4,79,24,57,13,68,35,46)(5,80,25,58,14,69,36,47)(6,81,26,59,15,70,37,48)(7,82,27,60,16,71,38,49)(8,83,28,61,17,72,39,50)(9,84,29,62,18,73,40,51)(10,85,30,63,19,74,41,52)(11,86,31,64,20,75,42,53), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85) );

G=PermutationGroup([[(1,87,32,65,21,76,43,54),(2,88,33,66,22,77,44,55),(3,78,23,56,12,67,34,45),(4,79,24,57,13,68,35,46),(5,80,25,58,14,69,36,47),(6,81,26,59,15,70,37,48),(7,82,27,60,16,71,38,49),(8,83,28,61,17,72,39,50),(9,84,29,62,18,73,40,51),(10,85,30,63,19,74,41,52),(11,86,31,64,20,75,42,53)], [(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,22),(11,21),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,44),(31,43),(32,42),(33,41),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(52,66),(53,65),(54,64),(55,63),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,88),(75,87),(76,86),(77,85)]])

49 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D8A8B8C8D11A···11E22A···22E22F···22J44A···44E44F···44J88A···88J
order1222224444888811···1122···2222···2244···4444···4488···88
size1141111442422442222222···22···28···84···48···84···4

49 irreducible representations

dim11111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4SD16D11D22D22D22D4×D11SD16×D11
kernelSD16×D11C8×D11C8⋊D11D4.D11Q8⋊D11C11×SD16D4×D11Q8×D11Dic11D22D11SD16C8D4Q8C2C1
# reps111111111145555510

Matrix representation of SD16×D11 in GL4(𝔽89) generated by

88000
08800
008376
003955
,
1000
0100
00186
00088
,
3100
11400
0010
0001
,
48800
158500
0010
0001
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,83,39,0,0,76,55],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,86,88],[3,11,0,0,1,4,0,0,0,0,1,0,0,0,0,1],[4,15,0,0,88,85,0,0,0,0,1,0,0,0,0,1] >;

SD16×D11 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times D_{11}
% in TeX

G:=Group("SD16xD11");
// GroupNames label

G:=SmallGroup(352,108);
// by ID

G=gap.SmallGroup(352,108);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,116,86,297,159,69,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^11=d^2=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽