Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C13⋊C3

Direct product G=N×Q with N=C3 and Q=C3×C13⋊C3
dρLabelID
C32×C13⋊C3117C3^2xC13:C3351,13


Non-split extensions G=N.Q with N=C3 and Q=C3×C13⋊C3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C13⋊C3) = C9×C13⋊C3central extension (φ=1)1173C3.1(C3xC13:C3)351,3
C3.2(C3×C13⋊C3) = C3×C13⋊C9central extension (φ=1)351C3.2(C3xC13:C3)351,6
C3.3(C3×C13⋊C3) = C117⋊C3central stem extension (φ=1)1173C3.3(C3xC13:C3)351,4
C3.4(C3×C13⋊C3) = C1173C3central stem extension (φ=1)1173C3.4(C3xC13:C3)351,5
C3.5(C3×C13⋊C3) = C39.C32central stem extension (φ=1)1173C3.5(C3xC13:C3)351,7
C3.6(C3×C13⋊C3) = C13⋊He3central stem extension (φ=1)1173C3.6(C3xC13:C3)351,8

׿
×
𝔽