Copied to
clipboard

G = C117⋊C3order 351 = 33·13

2nd semidirect product of C117 and C3 acting faithfully

metacyclic, supersoluble, monomial, 3-hyperelementary

Aliases: C1172C3, C39.2C32, C1313- 1+2, C13⋊C91C3, C91(C13⋊C3), C3.3(C3×C13⋊C3), (C3×C13⋊C3).1C3, SmallGroup(351,4)

Series: Derived Chief Lower central Upper central

C1C39 — C117⋊C3
C1C13C39C3×C13⋊C3 — C117⋊C3
C13C39 — C117⋊C3
C1C3C9

Generators and relations for C117⋊C3
 G = < a,b | a117=b3=1, bab-1=a61 >

39C3
13C32
13C9
13C9
3C13⋊C3
133- 1+2

Smallest permutation representation of C117⋊C3
On 117 points
Generators in S117
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)
(2 95 62)(3 72 6)(4 49 67)(5 26 11)(7 97 16)(8 74 77)(9 51 21)(10 28 82)(12 99 87)(13 76 31)(14 53 92)(15 30 36)(17 101 41)(18 78 102)(19 55 46)(20 32 107)(22 103 112)(23 80 56)(24 57 117)(25 34 61)(27 105 66)(29 59 71)(33 84 81)(35 38 86)(37 109 91)(39 63 96)(42 111 45)(43 88 106)(44 65 50)(47 113 116)(48 90 60)(52 115 70)(54 69 75)(58 94 85)(64 73 100)(68 98 110)(83 104 89)(93 108 114)

G:=sub<Sym(117)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117), (2,95,62)(3,72,6)(4,49,67)(5,26,11)(7,97,16)(8,74,77)(9,51,21)(10,28,82)(12,99,87)(13,76,31)(14,53,92)(15,30,36)(17,101,41)(18,78,102)(19,55,46)(20,32,107)(22,103,112)(23,80,56)(24,57,117)(25,34,61)(27,105,66)(29,59,71)(33,84,81)(35,38,86)(37,109,91)(39,63,96)(42,111,45)(43,88,106)(44,65,50)(47,113,116)(48,90,60)(52,115,70)(54,69,75)(58,94,85)(64,73,100)(68,98,110)(83,104,89)(93,108,114)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117), (2,95,62)(3,72,6)(4,49,67)(5,26,11)(7,97,16)(8,74,77)(9,51,21)(10,28,82)(12,99,87)(13,76,31)(14,53,92)(15,30,36)(17,101,41)(18,78,102)(19,55,46)(20,32,107)(22,103,112)(23,80,56)(24,57,117)(25,34,61)(27,105,66)(29,59,71)(33,84,81)(35,38,86)(37,109,91)(39,63,96)(42,111,45)(43,88,106)(44,65,50)(47,113,116)(48,90,60)(52,115,70)(54,69,75)(58,94,85)(64,73,100)(68,98,110)(83,104,89)(93,108,114) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)], [(2,95,62),(3,72,6),(4,49,67),(5,26,11),(7,97,16),(8,74,77),(9,51,21),(10,28,82),(12,99,87),(13,76,31),(14,53,92),(15,30,36),(17,101,41),(18,78,102),(19,55,46),(20,32,107),(22,103,112),(23,80,56),(24,57,117),(25,34,61),(27,105,66),(29,59,71),(33,84,81),(35,38,86),(37,109,91),(39,63,96),(42,111,45),(43,88,106),(44,65,50),(47,113,116),(48,90,60),(52,115,70),(54,69,75),(58,94,85),(64,73,100),(68,98,110),(83,104,89),(93,108,114)]])

47 conjugacy classes

class 1 3A3B3C3D9A9B9C9D9E9F13A13B13C13D39A···39H117A···117X
order133339999991313131339···39117···117
size1113939333939393933333···33···3

47 irreducible representations

dim11113333
type+
imageC1C3C3C33- 1+2C13⋊C3C3×C13⋊C3C117⋊C3
kernelC117⋊C3C13⋊C9C117C3×C13⋊C3C13C9C3C1
# reps142224824

Matrix representation of C117⋊C3 in GL3(𝔽937) generated by

192541651
16772142
541651838
,
322322921
0921742
0127631
G:=sub<GL(3,GF(937))| [192,167,541,541,72,651,651,142,838],[322,0,0,322,921,127,921,742,631] >;

C117⋊C3 in GAP, Magma, Sage, TeX

C_{117}\rtimes C_3
% in TeX

G:=Group("C117:C3");
// GroupNames label

G:=SmallGroup(351,4);
// by ID

G=gap.SmallGroup(351,4);
# by ID

G:=PCGroup([4,-3,-3,-3,-13,97,29,1299]);
// Polycyclic

G:=Group<a,b|a^117=b^3=1,b*a*b^-1=a^61>;
// generators/relations

Export

Subgroup lattice of C117⋊C3 in TeX

׿
×
𝔽