direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary
Aliases: C3×C13⋊C3, C39⋊C3, C13⋊C32, SmallGroup(117,3)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C13⋊C3 — C3×C13⋊C3 |
C13 — C3×C13⋊C3 |
Generators and relations for C3×C13⋊C3
G = < a,b,c | a3=b13=c3=1, ab=ba, ac=ca, cbc-1=b9 >
Character table of C3×C13⋊C3
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 13A | 13B | 13C | 13D | 39A | 39B | 39C | 39D | 39E | 39F | 39G | 39H | |
size | 1 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ9 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ10 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | complex lifted from C13⋊C3 |
ρ11 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | complex lifted from C13⋊C3 |
ρ12 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | complex lifted from C13⋊C3 |
ρ13 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | complex lifted from C13⋊C3 |
ρ14 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | complex faithful |
ρ15 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | complex faithful |
ρ16 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | complex faithful |
ρ17 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | complex faithful |
ρ18 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | complex faithful |
ρ19 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | complex faithful |
ρ20 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | complex faithful |
ρ21 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | complex faithful |
(1 27 14)(2 28 15)(3 29 16)(4 30 17)(5 31 18)(6 32 19)(7 33 20)(8 34 21)(9 35 22)(10 36 23)(11 37 24)(12 38 25)(13 39 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)
G:=sub<Sym(39)| (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)>;
G:=Group( (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38) );
G=PermutationGroup([[(1,27,14),(2,28,15),(3,29,16),(4,30,17),(5,31,18),(6,32,19),(7,33,20),(8,34,21),(9,35,22),(10,36,23),(11,37,24),(12,38,25),(13,39,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38)]])
C3×C13⋊C3 is a maximal subgroup of
D39⋊C3 C117⋊C3 C117⋊3C3 C13⋊He3
C3×C13⋊C3 is a maximal quotient of C117⋊C3 C117⋊3C3 C39.C32 C13⋊He3
Matrix representation of C3×C13⋊C3 ►in GL3(𝔽79) generated by
23 | 0 | 0 |
0 | 23 | 0 |
0 | 0 | 23 |
69 | 54 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
24 | 68 | 54 |
3 | 55 | 10 |
G:=sub<GL(3,GF(79))| [23,0,0,0,23,0,0,0,23],[69,1,0,54,0,1,1,0,0],[1,24,3,0,68,55,0,54,10] >;
C3×C13⋊C3 in GAP, Magma, Sage, TeX
C_3\times C_{13}\rtimes C_3
% in TeX
G:=Group("C3xC13:C3");
// GroupNames label
G:=SmallGroup(117,3);
// by ID
G=gap.SmallGroup(117,3);
# by ID
G:=PCGroup([3,-3,-3,-13,245]);
// Polycyclic
G:=Group<a,b,c|a^3=b^13=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations
Export
Subgroup lattice of C3×C13⋊C3 in TeX
Character table of C3×C13⋊C3 in TeX