d | ρ | Label | ID | ||
---|---|---|---|---|---|
C32×C39 | 351 | C3^2xC39 | 351,14 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C39)⋊1C3 = C13×He3 | φ: C3/C1 → C3 ⊆ Aut C3×C39 | 117 | 3 | (C3xC39):1C3 | 351,10 |
(C3×C39)⋊2C3 = C13⋊He3 | φ: C3/C1 → C3 ⊆ Aut C3×C39 | 117 | 3 | (C3xC39):2C3 | 351,8 |
(C3×C39)⋊3C3 = C32×C13⋊C3 | φ: C3/C1 → C3 ⊆ Aut C3×C39 | 117 | (C3xC39):3C3 | 351,13 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C39).1C3 = C13×3- 1+2 | φ: C3/C1 → C3 ⊆ Aut C3×C39 | 117 | 3 | (C3xC39).1C3 | 351,11 |
(C3×C39).2C3 = C3×C13⋊C9 | φ: C3/C1 → C3 ⊆ Aut C3×C39 | 351 | (C3xC39).2C3 | 351,6 | |
(C3×C39).3C3 = C39.C32 | φ: C3/C1 → C3 ⊆ Aut C3×C39 | 117 | 3 | (C3xC39).3C3 | 351,7 |