Copied to
clipboard

G = C13×He3order 351 = 33·13

Direct product of C13 and He3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C13×He3, C32⋊C39, C39.7C32, (C3×C39)⋊1C3, C3.1(C3×C39), SmallGroup(351,10)

Series: Derived Chief Lower central Upper central

C1C3 — C13×He3
C1C3C39C3×C39 — C13×He3
C1C3 — C13×He3
C1C39 — C13×He3

Generators and relations for C13×He3
 G = < a,b,c,d | a13=b3=c3=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, cd=dc >

3C3
3C3
3C3
3C3
3C39
3C39
3C39
3C39

Smallest permutation representation of C13×He3
On 117 points
Generators in S117
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)
(14 41 76)(15 42 77)(16 43 78)(17 44 66)(18 45 67)(19 46 68)(20 47 69)(21 48 70)(22 49 71)(23 50 72)(24 51 73)(25 52 74)(26 40 75)(27 84 63)(28 85 64)(29 86 65)(30 87 53)(31 88 54)(32 89 55)(33 90 56)(34 91 57)(35 79 58)(36 80 59)(37 81 60)(38 82 61)(39 83 62)
(1 117 97)(2 105 98)(3 106 99)(4 107 100)(5 108 101)(6 109 102)(7 110 103)(8 111 104)(9 112 92)(10 113 93)(11 114 94)(12 115 95)(13 116 96)(14 76 41)(15 77 42)(16 78 43)(17 66 44)(18 67 45)(19 68 46)(20 69 47)(21 70 48)(22 71 49)(23 72 50)(24 73 51)(25 74 52)(26 75 40)(27 84 63)(28 85 64)(29 86 65)(30 87 53)(31 88 54)(32 89 55)(33 90 56)(34 91 57)(35 79 58)(36 80 59)(37 81 60)(38 82 61)(39 83 62)
(1 25 38)(2 26 39)(3 14 27)(4 15 28)(5 16 29)(6 17 30)(7 18 31)(8 19 32)(9 20 33)(10 21 34)(11 22 35)(12 23 36)(13 24 37)(40 62 98)(41 63 99)(42 64 100)(43 65 101)(44 53 102)(45 54 103)(46 55 104)(47 56 92)(48 57 93)(49 58 94)(50 59 95)(51 60 96)(52 61 97)(66 87 109)(67 88 110)(68 89 111)(69 90 112)(70 91 113)(71 79 114)(72 80 115)(73 81 116)(74 82 117)(75 83 105)(76 84 106)(77 85 107)(78 86 108)

G:=sub<Sym(117)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (14,41,76)(15,42,77)(16,43,78)(17,44,66)(18,45,67)(19,46,68)(20,47,69)(21,48,70)(22,49,71)(23,50,72)(24,51,73)(25,52,74)(26,40,75)(27,84,63)(28,85,64)(29,86,65)(30,87,53)(31,88,54)(32,89,55)(33,90,56)(34,91,57)(35,79,58)(36,80,59)(37,81,60)(38,82,61)(39,83,62), (1,117,97)(2,105,98)(3,106,99)(4,107,100)(5,108,101)(6,109,102)(7,110,103)(8,111,104)(9,112,92)(10,113,93)(11,114,94)(12,115,95)(13,116,96)(14,76,41)(15,77,42)(16,78,43)(17,66,44)(18,67,45)(19,68,46)(20,69,47)(21,70,48)(22,71,49)(23,72,50)(24,73,51)(25,74,52)(26,75,40)(27,84,63)(28,85,64)(29,86,65)(30,87,53)(31,88,54)(32,89,55)(33,90,56)(34,91,57)(35,79,58)(36,80,59)(37,81,60)(38,82,61)(39,83,62), (1,25,38)(2,26,39)(3,14,27)(4,15,28)(5,16,29)(6,17,30)(7,18,31)(8,19,32)(9,20,33)(10,21,34)(11,22,35)(12,23,36)(13,24,37)(40,62,98)(41,63,99)(42,64,100)(43,65,101)(44,53,102)(45,54,103)(46,55,104)(47,56,92)(48,57,93)(49,58,94)(50,59,95)(51,60,96)(52,61,97)(66,87,109)(67,88,110)(68,89,111)(69,90,112)(70,91,113)(71,79,114)(72,80,115)(73,81,116)(74,82,117)(75,83,105)(76,84,106)(77,85,107)(78,86,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (14,41,76)(15,42,77)(16,43,78)(17,44,66)(18,45,67)(19,46,68)(20,47,69)(21,48,70)(22,49,71)(23,50,72)(24,51,73)(25,52,74)(26,40,75)(27,84,63)(28,85,64)(29,86,65)(30,87,53)(31,88,54)(32,89,55)(33,90,56)(34,91,57)(35,79,58)(36,80,59)(37,81,60)(38,82,61)(39,83,62), (1,117,97)(2,105,98)(3,106,99)(4,107,100)(5,108,101)(6,109,102)(7,110,103)(8,111,104)(9,112,92)(10,113,93)(11,114,94)(12,115,95)(13,116,96)(14,76,41)(15,77,42)(16,78,43)(17,66,44)(18,67,45)(19,68,46)(20,69,47)(21,70,48)(22,71,49)(23,72,50)(24,73,51)(25,74,52)(26,75,40)(27,84,63)(28,85,64)(29,86,65)(30,87,53)(31,88,54)(32,89,55)(33,90,56)(34,91,57)(35,79,58)(36,80,59)(37,81,60)(38,82,61)(39,83,62), (1,25,38)(2,26,39)(3,14,27)(4,15,28)(5,16,29)(6,17,30)(7,18,31)(8,19,32)(9,20,33)(10,21,34)(11,22,35)(12,23,36)(13,24,37)(40,62,98)(41,63,99)(42,64,100)(43,65,101)(44,53,102)(45,54,103)(46,55,104)(47,56,92)(48,57,93)(49,58,94)(50,59,95)(51,60,96)(52,61,97)(66,87,109)(67,88,110)(68,89,111)(69,90,112)(70,91,113)(71,79,114)(72,80,115)(73,81,116)(74,82,117)(75,83,105)(76,84,106)(77,85,107)(78,86,108) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117)], [(14,41,76),(15,42,77),(16,43,78),(17,44,66),(18,45,67),(19,46,68),(20,47,69),(21,48,70),(22,49,71),(23,50,72),(24,51,73),(25,52,74),(26,40,75),(27,84,63),(28,85,64),(29,86,65),(30,87,53),(31,88,54),(32,89,55),(33,90,56),(34,91,57),(35,79,58),(36,80,59),(37,81,60),(38,82,61),(39,83,62)], [(1,117,97),(2,105,98),(3,106,99),(4,107,100),(5,108,101),(6,109,102),(7,110,103),(8,111,104),(9,112,92),(10,113,93),(11,114,94),(12,115,95),(13,116,96),(14,76,41),(15,77,42),(16,78,43),(17,66,44),(18,67,45),(19,68,46),(20,69,47),(21,70,48),(22,71,49),(23,72,50),(24,73,51),(25,74,52),(26,75,40),(27,84,63),(28,85,64),(29,86,65),(30,87,53),(31,88,54),(32,89,55),(33,90,56),(34,91,57),(35,79,58),(36,80,59),(37,81,60),(38,82,61),(39,83,62)], [(1,25,38),(2,26,39),(3,14,27),(4,15,28),(5,16,29),(6,17,30),(7,18,31),(8,19,32),(9,20,33),(10,21,34),(11,22,35),(12,23,36),(13,24,37),(40,62,98),(41,63,99),(42,64,100),(43,65,101),(44,53,102),(45,54,103),(46,55,104),(47,56,92),(48,57,93),(49,58,94),(50,59,95),(51,60,96),(52,61,97),(66,87,109),(67,88,110),(68,89,111),(69,90,112),(70,91,113),(71,79,114),(72,80,115),(73,81,116),(74,82,117),(75,83,105),(76,84,106),(77,85,107),(78,86,108)]])

143 conjugacy classes

class 1 3A3B3C···3J13A···13L39A···39X39Y···39DP
order1333···313···1339···3939···39
size1113···31···11···13···3

143 irreducible representations

dim111133
type+
imageC1C3C13C39He3C13×He3
kernelC13×He3C3×C39He3C32C13C1
# reps181296224

Matrix representation of C13×He3 in GL3(𝔽79) generated by

1000
0100
0010
,
100
0230
471655
,
2300
0230
0023
,
010
251122
455868
G:=sub<GL(3,GF(79))| [10,0,0,0,10,0,0,0,10],[1,0,47,0,23,16,0,0,55],[23,0,0,0,23,0,0,0,23],[0,25,45,1,11,58,0,22,68] >;

C13×He3 in GAP, Magma, Sage, TeX

C_{13}\times {\rm He}_3
% in TeX

G:=Group("C13xHe3");
// GroupNames label

G:=SmallGroup(351,10);
// by ID

G=gap.SmallGroup(351,10);
# by ID

G:=PCGroup([4,-3,-3,-13,-3,961]);
// Polycyclic

G:=Group<a,b,c,d|a^13=b^3=c^3=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C13×He3 in TeX

׿
×
𝔽