Copied to
clipboard

G = C13×3- 1+2order 351 = 33·13

Direct product of C13 and 3- 1+2

direct product, metacyclic, nilpotent (class 2), monomial, 3-elementary

Aliases: C13×3- 1+2, C9⋊C39, C1174C3, C32.C39, C39.8C32, (C3×C39).1C3, C3.2(C3×C39), SmallGroup(351,11)

Series: Derived Chief Lower central Upper central

C1C3 — C13×3- 1+2
C1C3C39C117 — C13×3- 1+2
C1C3 — C13×3- 1+2
C1C39 — C13×3- 1+2

Generators and relations for C13×3- 1+2
 G = < a,b,c | a13=b9=c3=1, ab=ba, ac=ca, cbc-1=b4 >

3C3
3C39

Smallest permutation representation of C13×3- 1+2
On 117 points
Generators in S117
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)
(1 36 20 68 79 41 63 92 110)(2 37 21 69 80 42 64 93 111)(3 38 22 70 81 43 65 94 112)(4 39 23 71 82 44 53 95 113)(5 27 24 72 83 45 54 96 114)(6 28 25 73 84 46 55 97 115)(7 29 26 74 85 47 56 98 116)(8 30 14 75 86 48 57 99 117)(9 31 15 76 87 49 58 100 105)(10 32 16 77 88 50 59 101 106)(11 33 17 78 89 51 60 102 107)(12 34 18 66 90 52 61 103 108)(13 35 19 67 91 40 62 104 109)
(14 48 117)(15 49 105)(16 50 106)(17 51 107)(18 52 108)(19 40 109)(20 41 110)(21 42 111)(22 43 112)(23 44 113)(24 45 114)(25 46 115)(26 47 116)(27 96 83)(28 97 84)(29 98 85)(30 99 86)(31 100 87)(32 101 88)(33 102 89)(34 103 90)(35 104 91)(36 92 79)(37 93 80)(38 94 81)(39 95 82)

G:=sub<Sym(117)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,36,20,68,79,41,63,92,110)(2,37,21,69,80,42,64,93,111)(3,38,22,70,81,43,65,94,112)(4,39,23,71,82,44,53,95,113)(5,27,24,72,83,45,54,96,114)(6,28,25,73,84,46,55,97,115)(7,29,26,74,85,47,56,98,116)(8,30,14,75,86,48,57,99,117)(9,31,15,76,87,49,58,100,105)(10,32,16,77,88,50,59,101,106)(11,33,17,78,89,51,60,102,107)(12,34,18,66,90,52,61,103,108)(13,35,19,67,91,40,62,104,109), (14,48,117)(15,49,105)(16,50,106)(17,51,107)(18,52,108)(19,40,109)(20,41,110)(21,42,111)(22,43,112)(23,44,113)(24,45,114)(25,46,115)(26,47,116)(27,96,83)(28,97,84)(29,98,85)(30,99,86)(31,100,87)(32,101,88)(33,102,89)(34,103,90)(35,104,91)(36,92,79)(37,93,80)(38,94,81)(39,95,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,36,20,68,79,41,63,92,110)(2,37,21,69,80,42,64,93,111)(3,38,22,70,81,43,65,94,112)(4,39,23,71,82,44,53,95,113)(5,27,24,72,83,45,54,96,114)(6,28,25,73,84,46,55,97,115)(7,29,26,74,85,47,56,98,116)(8,30,14,75,86,48,57,99,117)(9,31,15,76,87,49,58,100,105)(10,32,16,77,88,50,59,101,106)(11,33,17,78,89,51,60,102,107)(12,34,18,66,90,52,61,103,108)(13,35,19,67,91,40,62,104,109), (14,48,117)(15,49,105)(16,50,106)(17,51,107)(18,52,108)(19,40,109)(20,41,110)(21,42,111)(22,43,112)(23,44,113)(24,45,114)(25,46,115)(26,47,116)(27,96,83)(28,97,84)(29,98,85)(30,99,86)(31,100,87)(32,101,88)(33,102,89)(34,103,90)(35,104,91)(36,92,79)(37,93,80)(38,94,81)(39,95,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117)], [(1,36,20,68,79,41,63,92,110),(2,37,21,69,80,42,64,93,111),(3,38,22,70,81,43,65,94,112),(4,39,23,71,82,44,53,95,113),(5,27,24,72,83,45,54,96,114),(6,28,25,73,84,46,55,97,115),(7,29,26,74,85,47,56,98,116),(8,30,14,75,86,48,57,99,117),(9,31,15,76,87,49,58,100,105),(10,32,16,77,88,50,59,101,106),(11,33,17,78,89,51,60,102,107),(12,34,18,66,90,52,61,103,108),(13,35,19,67,91,40,62,104,109)], [(14,48,117),(15,49,105),(16,50,106),(17,51,107),(18,52,108),(19,40,109),(20,41,110),(21,42,111),(22,43,112),(23,44,113),(24,45,114),(25,46,115),(26,47,116),(27,96,83),(28,97,84),(29,98,85),(30,99,86),(31,100,87),(32,101,88),(33,102,89),(34,103,90),(35,104,91),(36,92,79),(37,93,80),(38,94,81),(39,95,82)]])

143 conjugacy classes

class 1 3A3B3C3D9A···9F13A···13L39A···39X39Y···39AV117A···117BT
order133339···913···1339···3939···39117···117
size111333···31···11···13···33···3

143 irreducible representations

dim11111133
type+
imageC1C3C3C13C39C393- 1+2C13×3- 1+2
kernelC13×3- 1+2C117C3×C393- 1+2C9C32C13C1
# reps162127224224

Matrix representation of C13×3- 1+2 in GL3(𝔽937) generated by

93100
09310
00931
,
010
889401292
420287536
,
100
03220
464401614
G:=sub<GL(3,GF(937))| [931,0,0,0,931,0,0,0,931],[0,889,420,1,401,287,0,292,536],[1,0,464,0,322,401,0,0,614] >;

C13×3- 1+2 in GAP, Magma, Sage, TeX

C_{13}\times 3_-^{1+2}
% in TeX

G:=Group("C13xES-(3,1)");
// GroupNames label

G:=SmallGroup(351,11);
// by ID

G=gap.SmallGroup(351,11);
# by ID

G:=PCGroup([4,-3,-3,-13,-3,468,961]);
// Polycyclic

G:=Group<a,b,c|a^13=b^9=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C13×3- 1+2 in TeX

׿
×
𝔽