Extensions 1→N→G→Q→1 with N=C4 and Q=D44

Direct product G=N×Q with N=C4 and Q=D44
dρLabelID
C4×D44176C4xD44352,68

Semidirect products G=N:Q with N=C4 and Q=D44
extensionφ:Q→Aut NdρLabelID
C41D44 = C4⋊D44φ: D44/C44C2 ⊆ Aut C4176C4:1D44352,69
C42D44 = C42D44φ: D44/D22C2 ⊆ Aut C4176C4:2D44352,90

Non-split extensions G=N.Q with N=C4 and Q=D44
extensionφ:Q→Aut NdρLabelID
C4.1D44 = D176φ: D44/C44C2 ⊆ Aut C41762+C4.1D44352,5
C4.2D44 = C176⋊C2φ: D44/C44C2 ⊆ Aut C41762C4.2D44352,6
C4.3D44 = Dic88φ: D44/C44C2 ⊆ Aut C43522-C4.3D44352,7
C4.4D44 = C442Q8φ: D44/C44C2 ⊆ Aut C4352C4.4D44352,64
C4.5D44 = C4.D44φ: D44/C44C2 ⊆ Aut C4176C4.5D44352,70
C4.6D44 = C2×C8⋊D11φ: D44/C44C2 ⊆ Aut C4176C4.6D44352,97
C4.7D44 = C2×D88φ: D44/C44C2 ⊆ Aut C4176C4.7D44352,98
C4.8D44 = C2×Dic44φ: D44/C44C2 ⊆ Aut C4352C4.8D44352,100
C4.9D44 = C22.D8φ: D44/D22C2 ⊆ Aut C4176C4.9D44352,15
C4.10D44 = C22.Q16φ: D44/D22C2 ⊆ Aut C4352C4.10D44352,16
C4.11D44 = C44.46D4φ: D44/D22C2 ⊆ Aut C4884+C4.11D44352,29
C4.12D44 = C44.47D4φ: D44/D22C2 ⊆ Aut C41764-C4.12D44352,30
C4.13D44 = D222Q8φ: D44/D22C2 ⊆ Aut C4176C4.13D44352,92
C4.14D44 = C8⋊D22φ: D44/D22C2 ⊆ Aut C4884+C4.14D44352,103
C4.15D44 = C8.D22φ: D44/D22C2 ⊆ Aut C41764-C4.15D44352,104
C4.16D44 = C44⋊C8central extension (φ=1)352C4.16D44352,10
C4.17D44 = D441C4central extension (φ=1)882C4.17D44352,11
C4.18D44 = C88.C4central extension (φ=1)1762C4.18D44352,25
C4.19D44 = D22⋊C8central extension (φ=1)176C4.19D44352,26
C4.20D44 = D887C2central extension (φ=1)1762C4.20D44352,99

׿
×
𝔽