metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C176⋊2C2, C16⋊2D11, C2.4D88, C22.2D8, C4.2D44, C11⋊1SD32, D88.1C2, C8.14D22, C44.25D4, Dic44⋊1C2, C88.15C22, SmallGroup(352,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C176⋊C2
G = < a,b | a176=b2=1, bab=a87 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(2 88)(3 175)(4 86)(5 173)(6 84)(7 171)(8 82)(9 169)(10 80)(11 167)(12 78)(13 165)(14 76)(15 163)(16 74)(17 161)(18 72)(19 159)(20 70)(21 157)(22 68)(23 155)(24 66)(25 153)(26 64)(27 151)(28 62)(29 149)(30 60)(31 147)(32 58)(33 145)(34 56)(35 143)(36 54)(37 141)(38 52)(39 139)(40 50)(41 137)(42 48)(43 135)(44 46)(45 133)(47 131)(49 129)(51 127)(53 125)(55 123)(57 121)(59 119)(61 117)(63 115)(65 113)(67 111)(69 109)(71 107)(73 105)(75 103)(77 101)(79 99)(81 97)(83 95)(85 93)(87 91)(90 176)(92 174)(94 172)(96 170)(98 168)(100 166)(102 164)(104 162)(106 160)(108 158)(110 156)(112 154)(114 152)(116 150)(118 148)(120 146)(122 144)(124 142)(126 140)(128 138)(130 136)(132 134)
G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (2,88)(3,175)(4,86)(5,173)(6,84)(7,171)(8,82)(9,169)(10,80)(11,167)(12,78)(13,165)(14,76)(15,163)(16,74)(17,161)(18,72)(19,159)(20,70)(21,157)(22,68)(23,155)(24,66)(25,153)(26,64)(27,151)(28,62)(29,149)(30,60)(31,147)(32,58)(33,145)(34,56)(35,143)(36,54)(37,141)(38,52)(39,139)(40,50)(41,137)(42,48)(43,135)(44,46)(45,133)(47,131)(49,129)(51,127)(53,125)(55,123)(57,121)(59,119)(61,117)(63,115)(65,113)(67,111)(69,109)(71,107)(73,105)(75,103)(77,101)(79,99)(81,97)(83,95)(85,93)(87,91)(90,176)(92,174)(94,172)(96,170)(98,168)(100,166)(102,164)(104,162)(106,160)(108,158)(110,156)(112,154)(114,152)(116,150)(118,148)(120,146)(122,144)(124,142)(126,140)(128,138)(130,136)(132,134)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (2,88)(3,175)(4,86)(5,173)(6,84)(7,171)(8,82)(9,169)(10,80)(11,167)(12,78)(13,165)(14,76)(15,163)(16,74)(17,161)(18,72)(19,159)(20,70)(21,157)(22,68)(23,155)(24,66)(25,153)(26,64)(27,151)(28,62)(29,149)(30,60)(31,147)(32,58)(33,145)(34,56)(35,143)(36,54)(37,141)(38,52)(39,139)(40,50)(41,137)(42,48)(43,135)(44,46)(45,133)(47,131)(49,129)(51,127)(53,125)(55,123)(57,121)(59,119)(61,117)(63,115)(65,113)(67,111)(69,109)(71,107)(73,105)(75,103)(77,101)(79,99)(81,97)(83,95)(85,93)(87,91)(90,176)(92,174)(94,172)(96,170)(98,168)(100,166)(102,164)(104,162)(106,160)(108,158)(110,156)(112,154)(114,152)(116,150)(118,148)(120,146)(122,144)(124,142)(126,140)(128,138)(130,136)(132,134) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(2,88),(3,175),(4,86),(5,173),(6,84),(7,171),(8,82),(9,169),(10,80),(11,167),(12,78),(13,165),(14,76),(15,163),(16,74),(17,161),(18,72),(19,159),(20,70),(21,157),(22,68),(23,155),(24,66),(25,153),(26,64),(27,151),(28,62),(29,149),(30,60),(31,147),(32,58),(33,145),(34,56),(35,143),(36,54),(37,141),(38,52),(39,139),(40,50),(41,137),(42,48),(43,135),(44,46),(45,133),(47,131),(49,129),(51,127),(53,125),(55,123),(57,121),(59,119),(61,117),(63,115),(65,113),(67,111),(69,109),(71,107),(73,105),(75,103),(77,101),(79,99),(81,97),(83,95),(85,93),(87,91),(90,176),(92,174),(94,172),(96,170),(98,168),(100,166),(102,164),(104,162),(106,160),(108,158),(110,156),(112,154),(114,152),(116,150),(118,148),(120,146),(122,144),(124,142),(126,140),(128,138),(130,136),(132,134)]])
91 conjugacy classes
| class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | 11A | ··· | 11E | 16A | 16B | 16C | 16D | 22A | ··· | 22E | 44A | ··· | 44J | 88A | ··· | 88T | 176A | ··· | 176AN |
| order | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 11 | ··· | 11 | 16 | 16 | 16 | 16 | 22 | ··· | 22 | 44 | ··· | 44 | 88 | ··· | 88 | 176 | ··· | 176 |
| size | 1 | 1 | 88 | 2 | 88 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
91 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | ||
| image | C1 | C2 | C2 | C2 | D4 | D8 | D11 | SD32 | D22 | D44 | D88 | C176⋊C2 |
| kernel | C176⋊C2 | C176 | D88 | Dic44 | C44 | C22 | C16 | C11 | C8 | C4 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 1 | 2 | 5 | 4 | 5 | 10 | 20 | 40 |
Matrix representation of C176⋊C2 ►in GL2(𝔽353) generated by
| 258 | 343 |
| 10 | 198 |
| 1 | 0 |
| 6 | 352 |
G:=sub<GL(2,GF(353))| [258,10,343,198],[1,6,0,352] >;
C176⋊C2 in GAP, Magma, Sage, TeX
C_{176}\rtimes C_2 % in TeX
G:=Group("C176:C2"); // GroupNames label
G:=SmallGroup(352,6);
// by ID
G=gap.SmallGroup(352,6);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-11,73,79,506,50,579,69,11525]);
// Polycyclic
G:=Group<a,b|a^176=b^2=1,b*a*b=a^87>;
// generators/relations
Export