Copied to
clipboard

G = A6order 360 = 23·32·5

Alternating group on 6 letters

non-abelian, simple, perfect, not soluble

Aliases: A6, PSL2(𝔽9), PSO-4(𝔽3), PSU2(𝔽9), Ω3(𝔽9), Ω-4(𝔽3), 3(𝔽9), PΩ-4(𝔽3), Alt(6), Alt6, also denoted L2(9) (L=PSL), SmallGroup(360,118)

Series: ChiefDerived Lower central Upper central

C1 — A6
A6
A6
C1

45C2
20C3
20C3
36C5
15C22
15C22
45C4
60S3
60S3
10C32
36D5
45D4
15A4
15A4
10C3⋊S3
15S4
15S4
10C32⋊C4
6A5
6A5

Character table of A6

 class 123A3B45A5B
 size 1454040907272
ρ11111111    trivial
ρ2512-1-100    orthogonal faithful
ρ351-12-100    orthogonal faithful
ρ480-1-101-5/21+5/2    orthogonal faithful
ρ580-1-101+5/21-5/2    orthogonal faithful
ρ691001-1-1    orthogonal faithful
ρ710-211000    orthogonal faithful

Permutation representations of A6
On 6 points: primitive, sharply 4-transitive - transitive group 6T15
Generators in S6
(2 3 4 5 6)
(1 3 4 5 6)

G:=sub<Sym(6)| (2,3,4,5,6), (1,3,4,5,6)>;

G:=Group( (2,3,4,5,6), (1,3,4,5,6) );

G=PermutationGroup([[(2,3,4,5,6)], [(1,3,4,5,6)]])

G:=TransitiveGroup(6,15);

On 10 points: primitive, doubly transitive - transitive group 10T26
Generators in S10
(1 2 3 4 5)(6 7 8 9 10)
(1 4 5 3 7)(2 8 10 9 6)

G:=sub<Sym(10)| (1,2,3,4,5)(6,7,8,9,10), (1,4,5,3,7)(2,8,10,9,6)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10), (1,4,5,3,7)(2,8,10,9,6) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10)], [(1,4,5,3,7),(2,8,10,9,6)]])

G:=TransitiveGroup(10,26);

On 15 points: primitive - transitive group 15T20
Generators in S15
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)
(1 7 6 5 9)(2 15 14 13 4)(3 11 8 10 12)

G:=sub<Sym(15)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15), (1,7,6,5,9)(2,15,14,13,4)(3,11,8,10,12)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15), (1,7,6,5,9)(2,15,14,13,4)(3,11,8,10,12) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15)], [(1,7,6,5,9),(2,15,14,13,4),(3,11,8,10,12)]])

G:=TransitiveGroup(15,20);

On 20 points - transitive group 20T89
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 16 17 3 8)(2 13 6 10 11)(4 5 20 12 18)(7 19 9 15 14)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,16,17,3,8)(2,13,6,10,11)(4,5,20,12,18)(7,19,9,15,14)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,16,17,3,8)(2,13,6,10,11)(4,5,20,12,18)(7,19,9,15,14) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,16,17,3,8),(2,13,6,10,11),(4,5,20,12,18),(7,19,9,15,14)]])

G:=TransitiveGroup(20,89);

On 30 points - transitive group 30T88
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 2 18 13 5)(3 12 28 21 8)(4 10 24 27 19)(6 7 17 9 14)(11 20 29 30 26)(15 25 16 22 23)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,2,18,13,5)(3,12,28,21,8)(4,10,24,27,19)(6,7,17,9,14)(11,20,29,30,26)(15,25,16,22,23)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,2,18,13,5)(3,12,28,21,8)(4,10,24,27,19)(6,7,17,9,14)(11,20,29,30,26)(15,25,16,22,23) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,2,18,13,5),(3,12,28,21,8),(4,10,24,27,19),(6,7,17,9,14),(11,20,29,30,26),(15,25,16,22,23)]])

G:=TransitiveGroup(30,88);

Polynomial with Galois group A6 over ℚ
actionf(x)Disc(f)
6T15x6-2x5-x4+2x2-126·672
10T26x10-2x9-34x8+71x7+375x6-806x5-1392x4+3042x3+568x2-1243x-11576·2836·2126814532
15T20x15+12x13+2x12+54x11+18x10+134x9+54x8+153x7+22x6+162x5-24x4+77x3-9x-1342·318·36372·119692

Matrix representation of A6 in GL4(𝔽2) generated by

1101
1100
0011
0110
,
1011
1111
1100
1101
G:=sub<GL(4,GF(2))| [1,1,0,0,1,1,0,1,0,0,1,1,1,0,1,0],[1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1] >;

A6 in GAP, Magma, Sage, TeX

A_6
% in TeX

G:=Group("A6");
// GroupNames label

G:=SmallGroup(360,118);
// by ID

G=gap.SmallGroup(360,118);
# by ID

Export

Subgroup lattice of A6 in TeX
Character table of A6 in TeX

׿
×
𝔽