Copied to
clipboard

G = C17×C7⋊C3order 357 = 3·7·17

Direct product of C17 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C17×C7⋊C3, C7⋊C51, C119⋊C3, SmallGroup(357,1)

Series: Derived Chief Lower central Upper central

C1C7 — C17×C7⋊C3
C1C7C119 — C17×C7⋊C3
C7 — C17×C7⋊C3
C1C17

Generators and relations for C17×C7⋊C3
 G = < a,b,c | a17=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >

7C3
7C51

Smallest permutation representation of C17×C7⋊C3
On 119 points
Generators in S119
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)
(1 96 64 40 84 115 19)(2 97 65 41 85 116 20)(3 98 66 42 69 117 21)(4 99 67 43 70 118 22)(5 100 68 44 71 119 23)(6 101 52 45 72 103 24)(7 102 53 46 73 104 25)(8 86 54 47 74 105 26)(9 87 55 48 75 106 27)(10 88 56 49 76 107 28)(11 89 57 50 77 108 29)(12 90 58 51 78 109 30)(13 91 59 35 79 110 31)(14 92 60 36 80 111 32)(15 93 61 37 81 112 33)(16 94 62 38 82 113 34)(17 95 63 39 83 114 18)
(18 114 39)(19 115 40)(20 116 41)(21 117 42)(22 118 43)(23 119 44)(24 103 45)(25 104 46)(26 105 47)(27 106 48)(28 107 49)(29 108 50)(30 109 51)(31 110 35)(32 111 36)(33 112 37)(34 113 38)(52 72 101)(53 73 102)(54 74 86)(55 75 87)(56 76 88)(57 77 89)(58 78 90)(59 79 91)(60 80 92)(61 81 93)(62 82 94)(63 83 95)(64 84 96)(65 85 97)(66 69 98)(67 70 99)(68 71 100)

G:=sub<Sym(119)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119), (1,96,64,40,84,115,19)(2,97,65,41,85,116,20)(3,98,66,42,69,117,21)(4,99,67,43,70,118,22)(5,100,68,44,71,119,23)(6,101,52,45,72,103,24)(7,102,53,46,73,104,25)(8,86,54,47,74,105,26)(9,87,55,48,75,106,27)(10,88,56,49,76,107,28)(11,89,57,50,77,108,29)(12,90,58,51,78,109,30)(13,91,59,35,79,110,31)(14,92,60,36,80,111,32)(15,93,61,37,81,112,33)(16,94,62,38,82,113,34)(17,95,63,39,83,114,18), (18,114,39)(19,115,40)(20,116,41)(21,117,42)(22,118,43)(23,119,44)(24,103,45)(25,104,46)(26,105,47)(27,106,48)(28,107,49)(29,108,50)(30,109,51)(31,110,35)(32,111,36)(33,112,37)(34,113,38)(52,72,101)(53,73,102)(54,74,86)(55,75,87)(56,76,88)(57,77,89)(58,78,90)(59,79,91)(60,80,92)(61,81,93)(62,82,94)(63,83,95)(64,84,96)(65,85,97)(66,69,98)(67,70,99)(68,71,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119), (1,96,64,40,84,115,19)(2,97,65,41,85,116,20)(3,98,66,42,69,117,21)(4,99,67,43,70,118,22)(5,100,68,44,71,119,23)(6,101,52,45,72,103,24)(7,102,53,46,73,104,25)(8,86,54,47,74,105,26)(9,87,55,48,75,106,27)(10,88,56,49,76,107,28)(11,89,57,50,77,108,29)(12,90,58,51,78,109,30)(13,91,59,35,79,110,31)(14,92,60,36,80,111,32)(15,93,61,37,81,112,33)(16,94,62,38,82,113,34)(17,95,63,39,83,114,18), (18,114,39)(19,115,40)(20,116,41)(21,117,42)(22,118,43)(23,119,44)(24,103,45)(25,104,46)(26,105,47)(27,106,48)(28,107,49)(29,108,50)(30,109,51)(31,110,35)(32,111,36)(33,112,37)(34,113,38)(52,72,101)(53,73,102)(54,74,86)(55,75,87)(56,76,88)(57,77,89)(58,78,90)(59,79,91)(60,80,92)(61,81,93)(62,82,94)(63,83,95)(64,84,96)(65,85,97)(66,69,98)(67,70,99)(68,71,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)], [(1,96,64,40,84,115,19),(2,97,65,41,85,116,20),(3,98,66,42,69,117,21),(4,99,67,43,70,118,22),(5,100,68,44,71,119,23),(6,101,52,45,72,103,24),(7,102,53,46,73,104,25),(8,86,54,47,74,105,26),(9,87,55,48,75,106,27),(10,88,56,49,76,107,28),(11,89,57,50,77,108,29),(12,90,58,51,78,109,30),(13,91,59,35,79,110,31),(14,92,60,36,80,111,32),(15,93,61,37,81,112,33),(16,94,62,38,82,113,34),(17,95,63,39,83,114,18)], [(18,114,39),(19,115,40),(20,116,41),(21,117,42),(22,118,43),(23,119,44),(24,103,45),(25,104,46),(26,105,47),(27,106,48),(28,107,49),(29,108,50),(30,109,51),(31,110,35),(32,111,36),(33,112,37),(34,113,38),(52,72,101),(53,73,102),(54,74,86),(55,75,87),(56,76,88),(57,77,89),(58,78,90),(59,79,91),(60,80,92),(61,81,93),(62,82,94),(63,83,95),(64,84,96),(65,85,97),(66,69,98),(67,70,99),(68,71,100)]])

85 conjugacy classes

class 1 3A3B7A7B17A···17P51A···51AF119A···119AF
order1337717···1751···51119···119
size177331···17···73···3

85 irreducible representations

dim111133
type+
imageC1C3C17C51C7⋊C3C17×C7⋊C3
kernelC17×C7⋊C3C119C7⋊C3C7C17C1
# reps121632232

Matrix representation of C17×C7⋊C3 in GL3(𝔽1429) generated by

115700
011570
001157
,
001
10502
01501
,
10501
001428
011428
G:=sub<GL(3,GF(1429))| [1157,0,0,0,1157,0,0,0,1157],[0,1,0,0,0,1,1,502,501],[1,0,0,0,0,1,501,1428,1428] >;

C17×C7⋊C3 in GAP, Magma, Sage, TeX

C_{17}\times C_7\rtimes C_3
% in TeX

G:=Group("C17xC7:C3");
// GroupNames label

G:=SmallGroup(357,1);
// by ID

G=gap.SmallGroup(357,1);
# by ID

G:=PCGroup([3,-3,-17,-7,920]);
// Polycyclic

G:=Group<a,b,c|a^17=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C17×C7⋊C3 in TeX

׿
×
𝔽