Copied to
clipboard

G = C31⋊A4order 372 = 22·3·31

The semidirect product of C31 and A4 acting via A4/C22=C3

metabelian, soluble, monomial, A-group

Aliases: C31⋊A4, (C2×C62)⋊2C3, C22⋊(C31⋊C3), SmallGroup(372,11)

Series: Derived Chief Lower central Upper central

C1C2×C62 — C31⋊A4
C1C31C2×C62 — C31⋊A4
C2×C62 — C31⋊A4
C1

Generators and relations for C31⋊A4
 G = < a,b,c,d | a31=b2=c2=d3=1, ab=ba, ac=ca, dad-1=a5, dbd-1=bc=cb, dcd-1=b >

3C2
124C3
3C62
4C31⋊C3
31A4

Smallest permutation representation of C31⋊A4
On 124 points
Generators in S124
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)(94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124)
(1 81)(2 82)(3 83)(4 84)(5 85)(6 86)(7 87)(8 88)(9 89)(10 90)(11 91)(12 92)(13 93)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 100)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 117)(50 118)(51 119)(52 120)(53 121)(54 122)(55 123)(56 124)(57 94)(58 95)(59 96)(60 97)(61 98)(62 99)
(1 53)(2 54)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 61)(10 62)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 94)(86 95)(87 96)(88 97)(89 98)(90 99)(91 100)(92 101)(93 102)
(2 26 6)(3 20 11)(4 14 16)(5 8 21)(7 27 31)(9 15 10)(12 28 25)(13 22 30)(17 29 19)(18 23 24)(32 123 69)(33 117 74)(34 111 79)(35 105 84)(36 99 89)(37 124 63)(38 118 68)(39 112 73)(40 106 78)(41 100 83)(42 94 88)(43 119 93)(44 113 67)(45 107 72)(46 101 77)(47 95 82)(48 120 87)(49 114 92)(50 108 66)(51 102 71)(52 96 76)(53 121 81)(54 115 86)(55 109 91)(56 103 65)(57 97 70)(58 122 75)(59 116 80)(60 110 85)(61 104 90)(62 98 64)

G:=sub<Sym(124)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,91)(12,92)(13,93)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,121)(54,122)(55,123)(56,124)(57,94)(58,95)(59,96)(60,97)(61,98)(62,99), (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(91,100)(92,101)(93,102), (2,26,6)(3,20,11)(4,14,16)(5,8,21)(7,27,31)(9,15,10)(12,28,25)(13,22,30)(17,29,19)(18,23,24)(32,123,69)(33,117,74)(34,111,79)(35,105,84)(36,99,89)(37,124,63)(38,118,68)(39,112,73)(40,106,78)(41,100,83)(42,94,88)(43,119,93)(44,113,67)(45,107,72)(46,101,77)(47,95,82)(48,120,87)(49,114,92)(50,108,66)(51,102,71)(52,96,76)(53,121,81)(54,115,86)(55,109,91)(56,103,65)(57,97,70)(58,122,75)(59,116,80)(60,110,85)(61,104,90)(62,98,64)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,91)(12,92)(13,93)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,121)(54,122)(55,123)(56,124)(57,94)(58,95)(59,96)(60,97)(61,98)(62,99), (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(91,100)(92,101)(93,102), (2,26,6)(3,20,11)(4,14,16)(5,8,21)(7,27,31)(9,15,10)(12,28,25)(13,22,30)(17,29,19)(18,23,24)(32,123,69)(33,117,74)(34,111,79)(35,105,84)(36,99,89)(37,124,63)(38,118,68)(39,112,73)(40,106,78)(41,100,83)(42,94,88)(43,119,93)(44,113,67)(45,107,72)(46,101,77)(47,95,82)(48,120,87)(49,114,92)(50,108,66)(51,102,71)(52,96,76)(53,121,81)(54,115,86)(55,109,91)(56,103,65)(57,97,70)(58,122,75)(59,116,80)(60,110,85)(61,104,90)(62,98,64) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93),(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)], [(1,81),(2,82),(3,83),(4,84),(5,85),(6,86),(7,87),(8,88),(9,89),(10,90),(11,91),(12,92),(13,93),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,100),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,117),(50,118),(51,119),(52,120),(53,121),(54,122),(55,123),(56,124),(57,94),(58,95),(59,96),(60,97),(61,98),(62,99)], [(1,53),(2,54),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,61),(10,62),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,94),(86,95),(87,96),(88,97),(89,98),(90,99),(91,100),(92,101),(93,102)], [(2,26,6),(3,20,11),(4,14,16),(5,8,21),(7,27,31),(9,15,10),(12,28,25),(13,22,30),(17,29,19),(18,23,24),(32,123,69),(33,117,74),(34,111,79),(35,105,84),(36,99,89),(37,124,63),(38,118,68),(39,112,73),(40,106,78),(41,100,83),(42,94,88),(43,119,93),(44,113,67),(45,107,72),(46,101,77),(47,95,82),(48,120,87),(49,114,92),(50,108,66),(51,102,71),(52,96,76),(53,121,81),(54,115,86),(55,109,91),(56,103,65),(57,97,70),(58,122,75),(59,116,80),(60,110,85),(61,104,90),(62,98,64)]])

44 conjugacy classes

class 1  2 3A3B31A···31J62A···62AD
order123331···3162···62
size131241243···33···3

44 irreducible representations

dim11333
type++
imageC1C3A4C31⋊C3C31⋊A4
kernelC31⋊A4C2×C62C31C22C1
# reps1211030

Matrix representation of C31⋊A4 in GL3(𝔽373) generated by

010
001
19646
,
561962
2248288
2884868
,
197288122
122346305
305308202
,
100
347161237
15519211
G:=sub<GL(3,GF(373))| [0,0,1,1,0,96,0,1,46],[56,2,288,196,248,48,2,288,68],[197,122,305,288,346,308,122,305,202],[1,347,155,0,161,19,0,237,211] >;

C31⋊A4 in GAP, Magma, Sage, TeX

C_{31}\rtimes A_4
% in TeX

G:=Group("C31:A4");
// GroupNames label

G:=SmallGroup(372,11);
// by ID

G=gap.SmallGroup(372,11);
# by ID

G:=PCGroup([4,-3,-2,2,-31,49,110,4803]);
// Polycyclic

G:=Group<a,b,c,d|a^31=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^5,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C31⋊A4 in TeX

׿
×
𝔽