direct product, non-abelian, not soluble
Aliases: C3×SL2(𝔽5), C6.A5, C2.(C3×A5), SmallGroup(360,51)
Series: Chief►Derived ►Lower central ►Upper central
SL2(𝔽5) — C3×SL2(𝔽5) |
SL2(𝔽5) — C3×SL2(𝔽5) |
Character table of C3×SL2(𝔽5)
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4 | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D | |
size | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 30 | 12 | 12 | 1 | 1 | 20 | 20 | 20 | 12 | 12 | 30 | 30 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 1 | 1 | 1 | 1+√5/2 | 1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ5 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 1 | 1 | 1 | 1-√5/2 | 1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ6 | 2 | -2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | -1+√5/2 | -1-√5/2 | 1+√-3 | 1-√-3 | 1 | ζ3 | ζ32 | 1+√5/2 | 1-√5/2 | 0 | 0 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | complex faithful |
ρ7 | 2 | -2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | -1+√5/2 | -1-√5/2 | 1-√-3 | 1+√-3 | 1 | ζ32 | ζ3 | 1+√5/2 | 1-√5/2 | 0 | 0 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | complex faithful |
ρ8 | 2 | -2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | -1-√5/2 | -1+√5/2 | 1-√-3 | 1+√-3 | 1 | ζ32 | ζ3 | 1-√5/2 | 1+√5/2 | 0 | 0 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | complex faithful |
ρ9 | 2 | -2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | -1-√5/2 | -1+√5/2 | 1+√-3 | 1-√-3 | 1 | ζ3 | ζ32 | 1-√5/2 | 1+√5/2 | 0 | 0 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | complex faithful |
ρ10 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | 1-√5/2 | 1+√5/2 | 3 | 3 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1 | -1 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from A5 |
ρ11 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | 1+√5/2 | 1-√5/2 | 3 | 3 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1 | -1 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from A5 |
ρ12 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1+√5/2 | 1-√5/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | ζ65 | ζ6 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | complex lifted from C3×A5 |
ρ13 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1-√5/2 | 1+√5/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | ζ65 | ζ6 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | complex lifted from C3×A5 |
ρ14 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1-√5/2 | 1+√5/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | ζ6 | ζ65 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | complex lifted from C3×A5 |
ρ15 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1+√5/2 | 1-√5/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | ζ6 | ζ65 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | complex lifted from C3×A5 |
ρ16 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 0 | -1 | -1 | 4 | 4 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A5 |
ρ17 | 4 | -4 | 4 | 4 | 1 | 1 | 1 | 0 | -1 | -1 | -4 | -4 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ18 | 4 | 4 | -2+2√-3 | -2-2√-3 | ζ3 | ζ32 | 1 | 0 | -1 | -1 | -2-2√-3 | -2+2√-3 | 1 | ζ3 | ζ32 | -1 | -1 | 0 | 0 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3×A5 |
ρ19 | 4 | -4 | -2-2√-3 | -2+2√-3 | ζ32 | ζ3 | 1 | 0 | -1 | -1 | 2-2√-3 | 2+2√-3 | -1 | ζ6 | ζ65 | 1 | 1 | 0 | 0 | ζ65 | ζ6 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | complex faithful |
ρ20 | 4 | 4 | -2-2√-3 | -2+2√-3 | ζ32 | ζ3 | 1 | 0 | -1 | -1 | -2+2√-3 | -2-2√-3 | 1 | ζ32 | ζ3 | -1 | -1 | 0 | 0 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3×A5 |
ρ21 | 4 | -4 | -2+2√-3 | -2-2√-3 | ζ3 | ζ32 | 1 | 0 | -1 | -1 | 2+2√-3 | 2-2√-3 | -1 | ζ65 | ζ6 | 1 | 1 | 0 | 0 | ζ6 | ζ65 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | complex faithful |
ρ22 | 5 | 5 | 5 | 5 | -1 | -1 | -1 | 1 | 0 | 0 | 5 | 5 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A5 |
ρ23 | 5 | 5 | -5-5√-3/2 | -5+5√-3/2 | ζ6 | ζ65 | -1 | 1 | 0 | 0 | -5+5√-3/2 | -5-5√-3/2 | -1 | ζ6 | ζ65 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A5 |
ρ24 | 5 | 5 | -5+5√-3/2 | -5-5√-3/2 | ζ65 | ζ6 | -1 | 1 | 0 | 0 | -5-5√-3/2 | -5+5√-3/2 | -1 | ζ65 | ζ6 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A5 |
ρ25 | 6 | -6 | 6 | 6 | 0 | 0 | 0 | 0 | 1 | 1 | -6 | -6 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ26 | 6 | -6 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 1 | 1 | 3+3√-3 | 3-3√-3 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | complex faithful |
ρ27 | 6 | -6 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 1 | 1 | 3-3√-3 | 3+3√-3 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | complex faithful |
(1 23 24)(2 18 19)(3 13 14)(4 38 39)(5 33 34)(6 28 29)(7 72 43)(8 67 68)(9 62 63)(10 57 58)(11 52 53)(12 47 48)(15 37 65)(16 59 51)(17 45 25)(20 42 70)(21 64 56)(22 50 30)(26 69 61)(27 55 35)(31 44 66)(32 60 40)(36 49 71)(41 54 46)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,23,24)(2,18,19)(3,13,14)(4,38,39)(5,33,34)(6,28,29)(7,72,43)(8,67,68)(9,62,63)(10,57,58)(11,52,53)(12,47,48)(15,37,65)(16,59,51)(17,45,25)(20,42,70)(21,64,56)(22,50,30)(26,69,61)(27,55,35)(31,44,66)(32,60,40)(36,49,71)(41,54,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,23,24)(2,18,19)(3,13,14)(4,38,39)(5,33,34)(6,28,29)(7,72,43)(8,67,68)(9,62,63)(10,57,58)(11,52,53)(12,47,48)(15,37,65)(16,59,51)(17,45,25)(20,42,70)(21,64,56)(22,50,30)(26,69,61)(27,55,35)(31,44,66)(32,60,40)(36,49,71)(41,54,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,23,24),(2,18,19),(3,13,14),(4,38,39),(5,33,34),(6,28,29),(7,72,43),(8,67,68),(9,62,63),(10,57,58),(11,52,53),(12,47,48),(15,37,65),(16,59,51),(17,45,25),(20,42,70),(21,64,56),(22,50,30),(26,69,61),(27,55,35),(31,44,66),(32,60,40),(36,49,71),(41,54,46)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)]])
Matrix representation of C3×SL2(𝔽5) ►in GL2(𝔽19) generated by
4 | 13 |
6 | 8 |
1 | 13 |
13 | 9 |
G:=sub<GL(2,GF(19))| [4,6,13,8],[1,13,13,9] >;
C3×SL2(𝔽5) in GAP, Magma, Sage, TeX
C_3\times {\rm SL}_2({\mathbb F}_5)
% in TeX
G:=Group("C3xSL(2,5)");
// GroupNames label
G:=SmallGroup(360,51);
// by ID
G=gap.SmallGroup(360,51);
# by ID
Export
Subgroup lattice of C3×SL2(𝔽5) in TeX
Character table of C3×SL2(𝔽5) in TeX