Aliases: ΓL2(𝔽4), C3⋊S5, A5⋊S3, (C3×A5)⋊2C2, SmallGroup(360,120)
Series: Chief►Derived ►Lower central ►Upper central
C3×A5 — ΓL2(𝔽4) |
Character table of ΓL2(𝔽4)
class | 1 | 2A | 2B | 3A | 3B | 3C | 4 | 5 | 6A | 6B | 15A | 15B | |
size | 1 | 15 | 30 | 2 | 20 | 40 | 90 | 24 | 30 | 60 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | -1 | 2 | -1 | 0 | 2 | -1 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 4 | 0 | -2 | 4 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | orthogonal lifted from S5 |
ρ5 | 4 | 0 | 2 | 4 | 1 | 1 | 0 | -1 | 0 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ6 | 5 | 1 | 1 | 5 | -1 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from S5 |
ρ7 | 5 | 1 | -1 | 5 | -1 | -1 | 1 | 0 | 1 | -1 | 0 | 0 | orthogonal lifted from S5 |
ρ8 | 6 | -2 | 0 | 6 | 0 | 0 | 0 | 1 | -2 | 0 | 1 | 1 | orthogonal lifted from S5 |
ρ9 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 1 | 1 | 0 | -1-√-15/2 | -1+√-15/2 | complex faithful |
ρ10 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 1 | 1 | 0 | -1+√-15/2 | -1-√-15/2 | complex faithful |
ρ11 | 8 | 0 | 0 | -4 | 2 | -1 | 0 | -2 | 0 | 0 | 1 | 1 | orthogonal faithful |
ρ12 | 10 | 2 | 0 | -5 | -2 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)
(2 5 10)(3 15 9)(4 6 8)(7 13 12)
G:=sub<Sym(15)| (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15), (2,5,10)(3,15,9)(4,6,8)(7,13,12)>;
G:=Group( (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15), (2,5,10)(3,15,9)(4,6,8)(7,13,12) );
G=PermutationGroup([[(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15)], [(2,5,10),(3,15,9),(4,6,8),(7,13,12)]])
G:=TransitiveGroup(15,21);
(1 2)(3 4)(5 6)(7 8 9)(10 11 12 13 14 15)
(1 6 4)(2 7 15)(3 13 12)(5 10 9)(8 11 14)
G:=sub<Sym(15)| (1,2)(3,4)(5,6)(7,8,9)(10,11,12,13,14,15), (1,6,4)(2,7,15)(3,13,12)(5,10,9)(8,11,14)>;
G:=Group( (1,2)(3,4)(5,6)(7,8,9)(10,11,12,13,14,15), (1,6,4)(2,7,15)(3,13,12)(5,10,9)(8,11,14) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8,9),(10,11,12,13,14,15)], [(1,6,4),(2,7,15),(3,13,12),(5,10,9),(8,11,14)]])
G:=TransitiveGroup(15,22);
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 13 16)(2 10 9)(3 12 11)(4 15 18)(5 17 7)(6 8 14)
G:=sub<Sym(18)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,13,16)(2,10,9)(3,12,11)(4,15,18)(5,17,7)(6,8,14)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,13,16)(2,10,9)(3,12,11)(4,15,18)(5,17,7)(6,8,14) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,13,16),(2,10,9),(3,12,11),(4,15,18),(5,17,7),(6,8,14)]])
G:=TransitiveGroup(18,146);
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 22 17)(2 5 7)(3 18 21)(4 10 11)(6 25 24)(8 15 27)(9 28 14)(12 19 30)(13 29 20)(16 23 26)
G:=sub<Sym(30)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,22,17)(2,5,7)(3,18,21)(4,10,11)(6,25,24)(8,15,27)(9,28,14)(12,19,30)(13,29,20)(16,23,26)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,22,17)(2,5,7)(3,18,21)(4,10,11)(6,25,24)(8,15,27)(9,28,14)(12,19,30)(13,29,20)(16,23,26) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,22,17),(2,5,7),(3,18,21),(4,10,11),(6,25,24),(8,15,27),(9,28,14),(12,19,30),(13,29,20),(16,23,26)]])
G:=TransitiveGroup(30,89);
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 13 21)(2 4 6)(3 27 15)(5 19 29)(7 22 18)(8 10 12)(9 30 24)(11 16 26)
G:=sub<Sym(30)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,13,21)(2,4,6)(3,27,15)(5,19,29)(7,22,18)(8,10,12)(9,30,24)(11,16,26)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,13,21)(2,4,6)(3,27,15)(5,19,29)(7,22,18)(8,10,12)(9,30,24)(11,16,26) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,13,21),(2,4,6),(3,27,15),(5,19,29),(7,22,18),(8,10,12),(9,30,24),(11,16,26)]])
G:=TransitiveGroup(30,93);
(2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 25 12)(2 22 27)(3 10 24)(4 9 28)(5 17 26)(6 11 16)(7 18 21)(8 20 29)(13 14 23)(15 30 19)
G:=sub<Sym(30)| (2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,25,12)(2,22,27)(3,10,24)(4,9,28)(5,17,26)(6,11,16)(7,18,21)(8,20,29)(13,14,23)(15,30,19)>;
G:=Group( (2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,25,12)(2,22,27)(3,10,24)(4,9,28)(5,17,26)(6,11,16)(7,18,21)(8,20,29)(13,14,23)(15,30,19) );
G=PermutationGroup([[(2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,25,12),(2,22,27),(3,10,24),(4,9,28),(5,17,26),(6,11,16),(7,18,21),(8,20,29),(13,14,23),(15,30,19)]])
G:=TransitiveGroup(30,101);
Polynomial with Galois group ΓL2(𝔽4) over ℚ
action | f(x) | Disc(f) |
---|---|---|
15T21 | x15-96x13+59x12+5031x11-13182x10-109799x9+487485x8+821655x7-6975764x6+2066256x5+46961715x4-80656366x3-8511147x2+57236934x+26273539 | 3140·1372·16096·156672·7066312·611590523272 |
15T22 | x15+6x14+27x13-65x12-1818x11-4800x10+15172x9+83334x8+100197x7-95461x6-358221x5-215697x4+185503x3+195837x2-101025x-138979 | 320·134·16096·25932·28418512 |
Matrix representation of ΓL2(𝔽4) ►in GL4(𝔽2) generated by
1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 |
G:=sub<GL(4,GF(2))| [1,1,1,0,0,1,1,0,0,1,0,1,1,0,1,0],[1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,1] >;
ΓL2(𝔽4) in GAP, Magma, Sage, TeX
{\rm GammaL}_2({\mathbb F}_4)
% in TeX
G:=Group("GammaL(2,4)");
// GroupNames label
G:=SmallGroup(360,120);
// by ID
G=gap.SmallGroup(360,120);
# by ID
Export
Subgroup lattice of ΓL2(𝔽4) in TeX
Character table of ΓL2(𝔽4) in TeX