Extensions 1→N→G→Q→1 with N=D4×C23 and Q=C2

Direct product G=N×Q with N=D4×C23 and Q=C2
dρLabelID
D4×C46184D4xC46368,38

Semidirect products G=N:Q with N=D4×C23 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C23)⋊1C2 = D4⋊D23φ: C2/C1C2 ⊆ Out D4×C231844+(D4xC23):1C2368,14
(D4×C23)⋊2C2 = D4×D23φ: C2/C1C2 ⊆ Out D4×C23924+(D4xC23):2C2368,31
(D4×C23)⋊3C2 = D42D23φ: C2/C1C2 ⊆ Out D4×C231844-(D4xC23):3C2368,32
(D4×C23)⋊4C2 = D8×C23φ: C2/C1C2 ⊆ Out D4×C231842(D4xC23):4C2368,24
(D4×C23)⋊5C2 = C4○D4×C23φ: trivial image1842(D4xC23):5C2368,40

Non-split extensions G=N.Q with N=D4×C23 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C23).1C2 = D4.D23φ: C2/C1C2 ⊆ Out D4×C231844-(D4xC23).1C2368,15
(D4×C23).2C2 = SD16×C23φ: C2/C1C2 ⊆ Out D4×C231842(D4xC23).2C2368,25

׿
×
𝔽