Copied to
clipboard

G = D4×D23order 368 = 24·23

Direct product of D4 and D23

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D23, C41D46, C92⋊C22, D923C2, C221D46, D462C22, C46.5C23, Dic231C22, C232(C2×D4), (C2×C46)⋊C22, (C4×D23)⋊1C2, (D4×C23)⋊2C2, C23⋊D41C2, (C22×D23)⋊2C2, C2.6(C22×D23), SmallGroup(368,31)

Series: Derived Chief Lower central Upper central

C1C46 — D4×D23
C1C23C46D46C22×D23 — D4×D23
C23C46 — D4×D23
C1C2D4

Generators and relations for D4×D23
 G = < a,b,c,d | a4=b2=c23=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 620 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C2×D4, C23, D23, D23, C46, C46, Dic23, C92, D46, D46, D46, C2×C46, C4×D23, D92, C23⋊D4, D4×C23, C22×D23, D4×D23
Quotients: C1, C2, C22, D4, C23, C2×D4, D23, D46, C22×D23, D4×D23

Smallest permutation representation of D4×D23
On 92 points
Generators in S92
(1 47 27 70)(2 48 28 71)(3 49 29 72)(4 50 30 73)(5 51 31 74)(6 52 32 75)(7 53 33 76)(8 54 34 77)(9 55 35 78)(10 56 36 79)(11 57 37 80)(12 58 38 81)(13 59 39 82)(14 60 40 83)(15 61 41 84)(16 62 42 85)(17 63 43 86)(18 64 44 87)(19 65 45 88)(20 66 46 89)(21 67 24 90)(22 68 25 91)(23 69 26 92)
(47 70)(48 71)(49 72)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 88)(66 89)(67 90)(68 91)(69 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)
(1 26)(2 25)(3 24)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(47 92)(48 91)(49 90)(50 89)(51 88)(52 87)(53 86)(54 85)(55 84)(56 83)(57 82)(58 81)(59 80)(60 79)(61 78)(62 77)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)

G:=sub<Sym(92)| (1,47,27,70)(2,48,28,71)(3,49,29,72)(4,50,30,73)(5,51,31,74)(6,52,32,75)(7,53,33,76)(8,54,34,77)(9,55,35,78)(10,56,36,79)(11,57,37,80)(12,58,38,81)(13,59,39,82)(14,60,40,83)(15,61,41,84)(16,62,42,85)(17,63,43,86)(18,64,44,87)(19,65,45,88)(20,66,46,89)(21,67,24,90)(22,68,25,91)(23,69,26,92), (47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92), (1,26)(2,25)(3,24)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(47,92)(48,91)(49,90)(50,89)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,80)(60,79)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)>;

G:=Group( (1,47,27,70)(2,48,28,71)(3,49,29,72)(4,50,30,73)(5,51,31,74)(6,52,32,75)(7,53,33,76)(8,54,34,77)(9,55,35,78)(10,56,36,79)(11,57,37,80)(12,58,38,81)(13,59,39,82)(14,60,40,83)(15,61,41,84)(16,62,42,85)(17,63,43,86)(18,64,44,87)(19,65,45,88)(20,66,46,89)(21,67,24,90)(22,68,25,91)(23,69,26,92), (47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92), (1,26)(2,25)(3,24)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(47,92)(48,91)(49,90)(50,89)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,80)(60,79)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70) );

G=PermutationGroup([[(1,47,27,70),(2,48,28,71),(3,49,29,72),(4,50,30,73),(5,51,31,74),(6,52,32,75),(7,53,33,76),(8,54,34,77),(9,55,35,78),(10,56,36,79),(11,57,37,80),(12,58,38,81),(13,59,39,82),(14,60,40,83),(15,61,41,84),(16,62,42,85),(17,63,43,86),(18,64,44,87),(19,65,45,88),(20,66,46,89),(21,67,24,90),(22,68,25,91),(23,69,26,92)], [(47,70),(48,71),(49,72),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,88),(66,89),(67,90),(68,91),(69,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)], [(1,26),(2,25),(3,24),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(47,92),(48,91),(49,90),(50,89),(51,88),(52,87),(53,86),(54,85),(55,84),(56,83),(57,82),(58,81),(59,80),(60,79),(61,78),(62,77),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B23A···23K46A···46K46L···46AG92A···92K
order122222224423···2346···4646···4692···92
size1122232346462462···22···24···44···4

65 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D23D46D46D4×D23
kernelD4×D23C4×D23D92C23⋊D4D4×C23C22×D23D23D4C4C22C1
# reps111212211112211

Matrix representation of D4×D23 in GL4(𝔽277) generated by

1000
0100
000276
0010
,
276000
027600
0010
000276
,
32100
2243300
0010
0001
,
24722700
903000
002760
000276
G:=sub<GL(4,GF(277))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,276,0],[276,0,0,0,0,276,0,0,0,0,1,0,0,0,0,276],[32,224,0,0,1,33,0,0,0,0,1,0,0,0,0,1],[247,90,0,0,227,30,0,0,0,0,276,0,0,0,0,276] >;

D4×D23 in GAP, Magma, Sage, TeX

D_4\times D_{23}
% in TeX

G:=Group("D4xD23");
// GroupNames label

G:=SmallGroup(368,31);
// by ID

G=gap.SmallGroup(368,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-23,97,8804]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^23=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽