direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×D23, C4⋊1D46, C92⋊C22, D92⋊3C2, C22⋊1D46, D46⋊2C22, C46.5C23, Dic23⋊1C22, C23⋊2(C2×D4), (C2×C46)⋊C22, (C4×D23)⋊1C2, (D4×C23)⋊2C2, C23⋊D4⋊1C2, (C22×D23)⋊2C2, C2.6(C22×D23), SmallGroup(368,31)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×D23
G = < a,b,c,d | a4=b2=c23=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 620 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C2×D4, C23, D23, D23, C46, C46, Dic23, C92, D46, D46, D46, C2×C46, C4×D23, D92, C23⋊D4, D4×C23, C22×D23, D4×D23
Quotients: C1, C2, C22, D4, C23, C2×D4, D23, D46, C22×D23, D4×D23
(1 47 27 70)(2 48 28 71)(3 49 29 72)(4 50 30 73)(5 51 31 74)(6 52 32 75)(7 53 33 76)(8 54 34 77)(9 55 35 78)(10 56 36 79)(11 57 37 80)(12 58 38 81)(13 59 39 82)(14 60 40 83)(15 61 41 84)(16 62 42 85)(17 63 43 86)(18 64 44 87)(19 65 45 88)(20 66 46 89)(21 67 24 90)(22 68 25 91)(23 69 26 92)
(47 70)(48 71)(49 72)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 88)(66 89)(67 90)(68 91)(69 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)
(1 26)(2 25)(3 24)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(47 92)(48 91)(49 90)(50 89)(51 88)(52 87)(53 86)(54 85)(55 84)(56 83)(57 82)(58 81)(59 80)(60 79)(61 78)(62 77)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)
G:=sub<Sym(92)| (1,47,27,70)(2,48,28,71)(3,49,29,72)(4,50,30,73)(5,51,31,74)(6,52,32,75)(7,53,33,76)(8,54,34,77)(9,55,35,78)(10,56,36,79)(11,57,37,80)(12,58,38,81)(13,59,39,82)(14,60,40,83)(15,61,41,84)(16,62,42,85)(17,63,43,86)(18,64,44,87)(19,65,45,88)(20,66,46,89)(21,67,24,90)(22,68,25,91)(23,69,26,92), (47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92), (1,26)(2,25)(3,24)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(47,92)(48,91)(49,90)(50,89)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,80)(60,79)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)>;
G:=Group( (1,47,27,70)(2,48,28,71)(3,49,29,72)(4,50,30,73)(5,51,31,74)(6,52,32,75)(7,53,33,76)(8,54,34,77)(9,55,35,78)(10,56,36,79)(11,57,37,80)(12,58,38,81)(13,59,39,82)(14,60,40,83)(15,61,41,84)(16,62,42,85)(17,63,43,86)(18,64,44,87)(19,65,45,88)(20,66,46,89)(21,67,24,90)(22,68,25,91)(23,69,26,92), (47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92), (1,26)(2,25)(3,24)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(47,92)(48,91)(49,90)(50,89)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,80)(60,79)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70) );
G=PermutationGroup([[(1,47,27,70),(2,48,28,71),(3,49,29,72),(4,50,30,73),(5,51,31,74),(6,52,32,75),(7,53,33,76),(8,54,34,77),(9,55,35,78),(10,56,36,79),(11,57,37,80),(12,58,38,81),(13,59,39,82),(14,60,40,83),(15,61,41,84),(16,62,42,85),(17,63,43,86),(18,64,44,87),(19,65,45,88),(20,66,46,89),(21,67,24,90),(22,68,25,91),(23,69,26,92)], [(47,70),(48,71),(49,72),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,88),(66,89),(67,90),(68,91),(69,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)], [(1,26),(2,25),(3,24),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(47,92),(48,91),(49,90),(50,89),(51,88),(52,87),(53,86),(54,85),(55,84),(56,83),(57,82),(58,81),(59,80),(60,79),(61,78),(62,77),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70)]])
65 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 23A | ··· | 23K | 46A | ··· | 46K | 46L | ··· | 46AG | 92A | ··· | 92K |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 23 | ··· | 23 | 46 | ··· | 46 | 46 | ··· | 46 | 92 | ··· | 92 |
size | 1 | 1 | 2 | 2 | 23 | 23 | 46 | 46 | 2 | 46 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
65 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D23 | D46 | D46 | D4×D23 |
kernel | D4×D23 | C4×D23 | D92 | C23⋊D4 | D4×C23 | C22×D23 | D23 | D4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 11 | 11 | 22 | 11 |
Matrix representation of D4×D23 ►in GL4(𝔽277) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 276 |
0 | 0 | 1 | 0 |
276 | 0 | 0 | 0 |
0 | 276 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 276 |
32 | 1 | 0 | 0 |
224 | 33 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
247 | 227 | 0 | 0 |
90 | 30 | 0 | 0 |
0 | 0 | 276 | 0 |
0 | 0 | 0 | 276 |
G:=sub<GL(4,GF(277))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,276,0],[276,0,0,0,0,276,0,0,0,0,1,0,0,0,0,276],[32,224,0,0,1,33,0,0,0,0,1,0,0,0,0,1],[247,90,0,0,227,30,0,0,0,0,276,0,0,0,0,276] >;
D4×D23 in GAP, Magma, Sage, TeX
D_4\times D_{23}
% in TeX
G:=Group("D4xD23");
// GroupNames label
G:=SmallGroup(368,31);
// by ID
G=gap.SmallGroup(368,31);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-23,97,8804]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^23=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations