Extensions 1→N→G→Q→1 with N=Q8×C23 and Q=C2

Direct product G=N×Q with N=Q8×C23 and Q=C2
dρLabelID
Q8×C46368Q8xC46368,39

Semidirect products G=N:Q with N=Q8×C23 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C23)⋊1C2 = Q8⋊D23φ: C2/C1C2 ⊆ Out Q8×C231844+(Q8xC23):1C2368,16
(Q8×C23)⋊2C2 = Q8×D23φ: C2/C1C2 ⊆ Out Q8×C231844-(Q8xC23):2C2368,33
(Q8×C23)⋊3C2 = D92⋊C2φ: C2/C1C2 ⊆ Out Q8×C231844+(Q8xC23):3C2368,34
(Q8×C23)⋊4C2 = SD16×C23φ: C2/C1C2 ⊆ Out Q8×C231842(Q8xC23):4C2368,25
(Q8×C23)⋊5C2 = C4○D4×C23φ: trivial image1842(Q8xC23):5C2368,40

Non-split extensions G=N.Q with N=Q8×C23 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C23).1C2 = C23⋊Q16φ: C2/C1C2 ⊆ Out Q8×C233684-(Q8xC23).1C2368,17
(Q8×C23).2C2 = Q16×C23φ: C2/C1C2 ⊆ Out Q8×C233682(Q8xC23).2C2368,26

׿
×
𝔽