Copied to
clipboard

G = D92⋊C2order 368 = 24·23

4th semidirect product of D92 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D924C2, Q82D23, C4.7D46, C46.8C23, C92.7C22, D46.3C22, Dic23.5C22, (C4×D23)⋊3C2, C233(C4○D4), (Q8×C23)⋊3C2, C2.9(C22×D23), SmallGroup(368,34)

Series: Derived Chief Lower central Upper central

C1C46 — D92⋊C2
C1C23C46D46C4×D23 — D92⋊C2
C23C46 — D92⋊C2
C1C2Q8

Generators and relations for D92⋊C2
 G = < a,b,c | a92=b2=c2=1, bab=a-1, cac=a45, cbc=a90b >

46C2
46C2
46C2
23C22
23C22
23C22
23C4
2D23
2D23
2D23
23C2×C4
23D4
23D4
23C2×C4
23D4
23C2×C4
23C4○D4

Smallest permutation representation of D92⋊C2
On 184 points
Generators in S184
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
(1 92)(2 91)(3 90)(4 89)(5 88)(6 87)(7 86)(8 85)(9 84)(10 83)(11 82)(12 81)(13 80)(14 79)(15 78)(16 77)(17 76)(18 75)(19 74)(20 73)(21 72)(22 71)(23 70)(24 69)(25 68)(26 67)(27 66)(28 65)(29 64)(30 63)(31 62)(32 61)(33 60)(34 59)(35 58)(36 57)(37 56)(38 55)(39 54)(40 53)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(93 150)(94 149)(95 148)(96 147)(97 146)(98 145)(99 144)(100 143)(101 142)(102 141)(103 140)(104 139)(105 138)(106 137)(107 136)(108 135)(109 134)(110 133)(111 132)(112 131)(113 130)(114 129)(115 128)(116 127)(117 126)(118 125)(119 124)(120 123)(121 122)(151 184)(152 183)(153 182)(154 181)(155 180)(156 179)(157 178)(158 177)(159 176)(160 175)(161 174)(162 173)(163 172)(164 171)(165 170)(166 169)(167 168)
(1 145)(2 98)(3 143)(4 96)(5 141)(6 94)(7 139)(8 184)(9 137)(10 182)(11 135)(12 180)(13 133)(14 178)(15 131)(16 176)(17 129)(18 174)(19 127)(20 172)(21 125)(22 170)(23 123)(24 168)(25 121)(26 166)(27 119)(28 164)(29 117)(30 162)(31 115)(32 160)(33 113)(34 158)(35 111)(36 156)(37 109)(38 154)(39 107)(40 152)(41 105)(42 150)(43 103)(44 148)(45 101)(46 146)(47 99)(48 144)(49 97)(50 142)(51 95)(52 140)(53 93)(54 138)(55 183)(56 136)(57 181)(58 134)(59 179)(60 132)(61 177)(62 130)(63 175)(64 128)(65 173)(66 126)(67 171)(68 124)(69 169)(70 122)(71 167)(72 120)(73 165)(74 118)(75 163)(76 116)(77 161)(78 114)(79 159)(80 112)(81 157)(82 110)(83 155)(84 108)(85 153)(86 106)(87 151)(88 104)(89 149)(90 102)(91 147)(92 100)

G:=sub<Sym(184)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,92)(2,91)(3,90)(4,89)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,70)(24,69)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(93,150)(94,149)(95,148)(96,147)(97,146)(98,145)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)(109,134)(110,133)(111,132)(112,131)(113,130)(114,129)(115,128)(116,127)(117,126)(118,125)(119,124)(120,123)(121,122)(151,184)(152,183)(153,182)(154,181)(155,180)(156,179)(157,178)(158,177)(159,176)(160,175)(161,174)(162,173)(163,172)(164,171)(165,170)(166,169)(167,168), (1,145)(2,98)(3,143)(4,96)(5,141)(6,94)(7,139)(8,184)(9,137)(10,182)(11,135)(12,180)(13,133)(14,178)(15,131)(16,176)(17,129)(18,174)(19,127)(20,172)(21,125)(22,170)(23,123)(24,168)(25,121)(26,166)(27,119)(28,164)(29,117)(30,162)(31,115)(32,160)(33,113)(34,158)(35,111)(36,156)(37,109)(38,154)(39,107)(40,152)(41,105)(42,150)(43,103)(44,148)(45,101)(46,146)(47,99)(48,144)(49,97)(50,142)(51,95)(52,140)(53,93)(54,138)(55,183)(56,136)(57,181)(58,134)(59,179)(60,132)(61,177)(62,130)(63,175)(64,128)(65,173)(66,126)(67,171)(68,124)(69,169)(70,122)(71,167)(72,120)(73,165)(74,118)(75,163)(76,116)(77,161)(78,114)(79,159)(80,112)(81,157)(82,110)(83,155)(84,108)(85,153)(86,106)(87,151)(88,104)(89,149)(90,102)(91,147)(92,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,92)(2,91)(3,90)(4,89)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,70)(24,69)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(93,150)(94,149)(95,148)(96,147)(97,146)(98,145)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)(109,134)(110,133)(111,132)(112,131)(113,130)(114,129)(115,128)(116,127)(117,126)(118,125)(119,124)(120,123)(121,122)(151,184)(152,183)(153,182)(154,181)(155,180)(156,179)(157,178)(158,177)(159,176)(160,175)(161,174)(162,173)(163,172)(164,171)(165,170)(166,169)(167,168), (1,145)(2,98)(3,143)(4,96)(5,141)(6,94)(7,139)(8,184)(9,137)(10,182)(11,135)(12,180)(13,133)(14,178)(15,131)(16,176)(17,129)(18,174)(19,127)(20,172)(21,125)(22,170)(23,123)(24,168)(25,121)(26,166)(27,119)(28,164)(29,117)(30,162)(31,115)(32,160)(33,113)(34,158)(35,111)(36,156)(37,109)(38,154)(39,107)(40,152)(41,105)(42,150)(43,103)(44,148)(45,101)(46,146)(47,99)(48,144)(49,97)(50,142)(51,95)(52,140)(53,93)(54,138)(55,183)(56,136)(57,181)(58,134)(59,179)(60,132)(61,177)(62,130)(63,175)(64,128)(65,173)(66,126)(67,171)(68,124)(69,169)(70,122)(71,167)(72,120)(73,165)(74,118)(75,163)(76,116)(77,161)(78,114)(79,159)(80,112)(81,157)(82,110)(83,155)(84,108)(85,153)(86,106)(87,151)(88,104)(89,149)(90,102)(91,147)(92,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)], [(1,92),(2,91),(3,90),(4,89),(5,88),(6,87),(7,86),(8,85),(9,84),(10,83),(11,82),(12,81),(13,80),(14,79),(15,78),(16,77),(17,76),(18,75),(19,74),(20,73),(21,72),(22,71),(23,70),(24,69),(25,68),(26,67),(27,66),(28,65),(29,64),(30,63),(31,62),(32,61),(33,60),(34,59),(35,58),(36,57),(37,56),(38,55),(39,54),(40,53),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(93,150),(94,149),(95,148),(96,147),(97,146),(98,145),(99,144),(100,143),(101,142),(102,141),(103,140),(104,139),(105,138),(106,137),(107,136),(108,135),(109,134),(110,133),(111,132),(112,131),(113,130),(114,129),(115,128),(116,127),(117,126),(118,125),(119,124),(120,123),(121,122),(151,184),(152,183),(153,182),(154,181),(155,180),(156,179),(157,178),(158,177),(159,176),(160,175),(161,174),(162,173),(163,172),(164,171),(165,170),(166,169),(167,168)], [(1,145),(2,98),(3,143),(4,96),(5,141),(6,94),(7,139),(8,184),(9,137),(10,182),(11,135),(12,180),(13,133),(14,178),(15,131),(16,176),(17,129),(18,174),(19,127),(20,172),(21,125),(22,170),(23,123),(24,168),(25,121),(26,166),(27,119),(28,164),(29,117),(30,162),(31,115),(32,160),(33,113),(34,158),(35,111),(36,156),(37,109),(38,154),(39,107),(40,152),(41,105),(42,150),(43,103),(44,148),(45,101),(46,146),(47,99),(48,144),(49,97),(50,142),(51,95),(52,140),(53,93),(54,138),(55,183),(56,136),(57,181),(58,134),(59,179),(60,132),(61,177),(62,130),(63,175),(64,128),(65,173),(66,126),(67,171),(68,124),(69,169),(70,122),(71,167),(72,120),(73,165),(74,118),(75,163),(76,116),(77,161),(78,114),(79,159),(80,112),(81,157),(82,110),(83,155),(84,108),(85,153),(86,106),(87,151),(88,104),(89,149),(90,102),(91,147),(92,100)]])

65 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E23A···23K46A···46K92A···92AG
order122224444423···2346···4692···92
size1146464622223232···22···24···4

65 irreducible representations

dim11112224
type+++++++
imageC1C2C2C2C4○D4D23D46D92⋊C2
kernelD92⋊C2C4×D23D92Q8×C23C23Q8C4C1
# reps13312113311

Matrix representation of D92⋊C2 in GL4(𝔽277) generated by

9410500
2127100
0027642
002111
,
1808500
499700
0027642
0001
,
18217000
1629500
0021727
0019560
G:=sub<GL(4,GF(277))| [94,21,0,0,105,271,0,0,0,0,276,211,0,0,42,1],[180,49,0,0,85,97,0,0,0,0,276,0,0,0,42,1],[182,162,0,0,170,95,0,0,0,0,217,195,0,0,27,60] >;

D92⋊C2 in GAP, Magma, Sage, TeX

D_{92}\rtimes C_2
% in TeX

G:=Group("D92:C2");
// GroupNames label

G:=SmallGroup(368,34);
// by ID

G=gap.SmallGroup(368,34);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-23,46,182,97,42,8804]);
// Polycyclic

G:=Group<a,b,c|a^92=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^45,c*b*c=a^90*b>;
// generators/relations

Export

Subgroup lattice of D92⋊C2 in TeX

׿
×
𝔽