Extensions 1→N→G→Q→1 with N=C2×C90 and Q=C2

Direct product G=N×Q with N=C2×C90 and Q=C2
dρLabelID
C22×C90360C2^2xC90360,50

Semidirect products G=N:Q with N=C2×C90 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C90)⋊1C2 = D4×C45φ: C2/C1C2 ⊆ Aut C2×C901802(C2xC90):1C2360,31
(C2×C90)⋊2C2 = C457D4φ: C2/C1C2 ⊆ Aut C2×C901802(C2xC90):2C2360,29
(C2×C90)⋊3C2 = C22×D45φ: C2/C1C2 ⊆ Aut C2×C90180(C2xC90):3C2360,49
(C2×C90)⋊4C2 = C5×C9⋊D4φ: C2/C1C2 ⊆ Aut C2×C901802(C2xC90):4C2360,24
(C2×C90)⋊5C2 = D9×C2×C10φ: C2/C1C2 ⊆ Aut C2×C90180(C2xC90):5C2360,48
(C2×C90)⋊6C2 = C9×C5⋊D4φ: C2/C1C2 ⊆ Aut C2×C901802(C2xC90):6C2360,19
(C2×C90)⋊7C2 = D5×C2×C18φ: C2/C1C2 ⊆ Aut C2×C90180(C2xC90):7C2360,47

Non-split extensions G=N.Q with N=C2×C90 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C90).1C2 = C2×Dic45φ: C2/C1C2 ⊆ Aut C2×C90360(C2xC90).1C2360,28
(C2×C90).2C2 = C10×Dic9φ: C2/C1C2 ⊆ Aut C2×C90360(C2xC90).2C2360,23
(C2×C90).3C2 = C18×Dic5φ: C2/C1C2 ⊆ Aut C2×C90360(C2xC90).3C2360,18

׿
×
𝔽