direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C45, C4⋊C90, C20⋊3C18, C36⋊3C10, C180⋊7C2, C60.11C6, C12.3C30, C22⋊2C90, C90.23C22, C3.(D4×C15), (C2×C90)⋊1C2, (C3×D4).C15, (D4×C15).C3, (C2×C18)⋊1C10, (C2×C10)⋊3C18, C6.6(C2×C30), (C2×C30).3C6, (C2×C6).2C30, C2.1(C2×C90), C15.3(C3×D4), C30.29(C2×C6), C18.6(C2×C10), C10.6(C2×C18), SmallGroup(360,31)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×C45
G = < a,b,c | a45=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 71 143 103)(2 72 144 104)(3 73 145 105)(4 74 146 106)(5 75 147 107)(6 76 148 108)(7 77 149 109)(8 78 150 110)(9 79 151 111)(10 80 152 112)(11 81 153 113)(12 82 154 114)(13 83 155 115)(14 84 156 116)(15 85 157 117)(16 86 158 118)(17 87 159 119)(18 88 160 120)(19 89 161 121)(20 90 162 122)(21 46 163 123)(22 47 164 124)(23 48 165 125)(24 49 166 126)(25 50 167 127)(26 51 168 128)(27 52 169 129)(28 53 170 130)(29 54 171 131)(30 55 172 132)(31 56 173 133)(32 57 174 134)(33 58 175 135)(34 59 176 91)(35 60 177 92)(36 61 178 93)(37 62 179 94)(38 63 180 95)(39 64 136 96)(40 65 137 97)(41 66 138 98)(42 67 139 99)(43 68 140 100)(44 69 141 101)(45 70 142 102)
(46 123)(47 124)(48 125)(49 126)(50 127)(51 128)(52 129)(53 130)(54 131)(55 132)(56 133)(57 134)(58 135)(59 91)(60 92)(61 93)(62 94)(63 95)(64 96)(65 97)(66 98)(67 99)(68 100)(69 101)(70 102)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 121)(90 122)
G:=sub<Sym(180)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,71,143,103)(2,72,144,104)(3,73,145,105)(4,74,146,106)(5,75,147,107)(6,76,148,108)(7,77,149,109)(8,78,150,110)(9,79,151,111)(10,80,152,112)(11,81,153,113)(12,82,154,114)(13,83,155,115)(14,84,156,116)(15,85,157,117)(16,86,158,118)(17,87,159,119)(18,88,160,120)(19,89,161,121)(20,90,162,122)(21,46,163,123)(22,47,164,124)(23,48,165,125)(24,49,166,126)(25,50,167,127)(26,51,168,128)(27,52,169,129)(28,53,170,130)(29,54,171,131)(30,55,172,132)(31,56,173,133)(32,57,174,134)(33,58,175,135)(34,59,176,91)(35,60,177,92)(36,61,178,93)(37,62,179,94)(38,63,180,95)(39,64,136,96)(40,65,137,97)(41,66,138,98)(42,67,139,99)(43,68,140,100)(44,69,141,101)(45,70,142,102), (46,123)(47,124)(48,125)(49,126)(50,127)(51,128)(52,129)(53,130)(54,131)(55,132)(56,133)(57,134)(58,135)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,101)(70,102)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,71,143,103)(2,72,144,104)(3,73,145,105)(4,74,146,106)(5,75,147,107)(6,76,148,108)(7,77,149,109)(8,78,150,110)(9,79,151,111)(10,80,152,112)(11,81,153,113)(12,82,154,114)(13,83,155,115)(14,84,156,116)(15,85,157,117)(16,86,158,118)(17,87,159,119)(18,88,160,120)(19,89,161,121)(20,90,162,122)(21,46,163,123)(22,47,164,124)(23,48,165,125)(24,49,166,126)(25,50,167,127)(26,51,168,128)(27,52,169,129)(28,53,170,130)(29,54,171,131)(30,55,172,132)(31,56,173,133)(32,57,174,134)(33,58,175,135)(34,59,176,91)(35,60,177,92)(36,61,178,93)(37,62,179,94)(38,63,180,95)(39,64,136,96)(40,65,137,97)(41,66,138,98)(42,67,139,99)(43,68,140,100)(44,69,141,101)(45,70,142,102), (46,123)(47,124)(48,125)(49,126)(50,127)(51,128)(52,129)(53,130)(54,131)(55,132)(56,133)(57,134)(58,135)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,101)(70,102)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,71,143,103),(2,72,144,104),(3,73,145,105),(4,74,146,106),(5,75,147,107),(6,76,148,108),(7,77,149,109),(8,78,150,110),(9,79,151,111),(10,80,152,112),(11,81,153,113),(12,82,154,114),(13,83,155,115),(14,84,156,116),(15,85,157,117),(16,86,158,118),(17,87,159,119),(18,88,160,120),(19,89,161,121),(20,90,162,122),(21,46,163,123),(22,47,164,124),(23,48,165,125),(24,49,166,126),(25,50,167,127),(26,51,168,128),(27,52,169,129),(28,53,170,130),(29,54,171,131),(30,55,172,132),(31,56,173,133),(32,57,174,134),(33,58,175,135),(34,59,176,91),(35,60,177,92),(36,61,178,93),(37,62,179,94),(38,63,180,95),(39,64,136,96),(40,65,137,97),(41,66,138,98),(42,67,139,99),(43,68,140,100),(44,69,141,101),(45,70,142,102)], [(46,123),(47,124),(48,125),(49,126),(50,127),(51,128),(52,129),(53,130),(54,131),(55,132),(56,133),(57,134),(58,135),(59,91),(60,92),(61,93),(62,94),(63,95),(64,96),(65,97),(66,98),(67,99),(68,100),(69,101),(70,102),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,121),(90,122)]])
225 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 6D | 6E | 6F | 9A | ··· | 9F | 10A | 10B | 10C | 10D | 10E | ··· | 10L | 12A | 12B | 15A | ··· | 15H | 18A | ··· | 18F | 18G | ··· | 18R | 20A | 20B | 20C | 20D | 30A | ··· | 30H | 30I | ··· | 30X | 36A | ··· | 36F | 45A | ··· | 45X | 60A | ··· | 60H | 90A | ··· | 90X | 90Y | ··· | 90BT | 180A | ··· | 180X |
| order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 12 | 12 | 15 | ··· | 15 | 18 | ··· | 18 | 18 | ··· | 18 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 30 | ··· | 30 | 36 | ··· | 36 | 45 | ··· | 45 | 60 | ··· | 60 | 90 | ··· | 90 | 90 | ··· | 90 | 180 | ··· | 180 |
| size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
225 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | ||||||||||||||||||||
| image | C1 | C2 | C2 | C3 | C5 | C6 | C6 | C9 | C10 | C10 | C15 | C18 | C18 | C30 | C30 | C45 | C90 | C90 | D4 | C3×D4 | C5×D4 | D4×C9 | D4×C15 | D4×C45 |
| kernel | D4×C45 | C180 | C2×C90 | D4×C15 | D4×C9 | C60 | C2×C30 | C5×D4 | C36 | C2×C18 | C3×D4 | C20 | C2×C10 | C12 | C2×C6 | D4 | C4 | C22 | C45 | C15 | C9 | C5 | C3 | C1 |
| # reps | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 6 | 4 | 8 | 8 | 6 | 12 | 8 | 16 | 24 | 24 | 48 | 1 | 2 | 4 | 6 | 8 | 24 |
Matrix representation of D4×C45 ►in GL2(𝔽181) generated by
| 169 | 0 |
| 0 | 169 |
| 180 | 2 |
| 180 | 1 |
| 1 | 0 |
| 1 | 180 |
G:=sub<GL(2,GF(181))| [169,0,0,169],[180,180,2,1],[1,1,0,180] >;
D4×C45 in GAP, Magma, Sage, TeX
D_4\times C_{45} % in TeX
G:=Group("D4xC45"); // GroupNames label
G:=SmallGroup(360,31);
// by ID
G=gap.SmallGroup(360,31);
# by ID
G:=PCGroup([6,-2,-2,-3,-5,-2,-3,745,554]);
// Polycyclic
G:=Group<a,b,c|a^45=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export