Extensions 1→N→G→Q→1 with N=C5×Dic9 and Q=C2

Direct product G=N×Q with N=C5×Dic9 and Q=C2
dρLabelID
C10×Dic9360C10xDic9360,23

Semidirect products G=N:Q with N=C5×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic9)⋊1C2 = D90.C2φ: C2/C1C2 ⊆ Out C5×Dic91804+(C5xDic9):1C2360,9
(C5×Dic9)⋊2C2 = D5×Dic9φ: C2/C1C2 ⊆ Out C5×Dic91804-(C5xDic9):2C2360,11
(C5×Dic9)⋊3C2 = C9⋊D20φ: C2/C1C2 ⊆ Out C5×Dic91804+(C5xDic9):3C2360,13
(C5×Dic9)⋊4C2 = C5×C9⋊D4φ: C2/C1C2 ⊆ Out C5×Dic91802(C5xDic9):4C2360,24
(C5×Dic9)⋊5C2 = D9×C20φ: trivial image1802(C5xDic9):5C2360,21

Non-split extensions G=N.Q with N=C5×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic9).1C2 = C45⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic93604-(C5xDic9).1C2360,7
(C5×Dic9).2C2 = C5×Dic18φ: C2/C1C2 ⊆ Out C5×Dic93602(C5xDic9).2C2360,20

׿
×
𝔽