direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D9×C20, C180⋊5C2, C36⋊2C10, D18.C10, C60.13S3, C30.57D6, Dic9⋊2C10, C10.14D18, C90.14C22, C9⋊1(C2×C20), C45⋊8(C2×C4), C3.(S3×C20), C15.5(C4×S3), C6.7(S3×C10), C12.5(C5×S3), C2.1(C10×D9), C18.2(C2×C10), (C5×Dic9)⋊5C2, (C10×D9).2C2, SmallGroup(360,21)
Series: Derived ►Chief ►Lower central ►Upper central
| C9 — D9×C20 |
Generators and relations for D9×C20
G = < a,b,c | a20=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 50 25 96 102 76 174 124 144)(2 51 26 97 103 77 175 125 145)(3 52 27 98 104 78 176 126 146)(4 53 28 99 105 79 177 127 147)(5 54 29 100 106 80 178 128 148)(6 55 30 81 107 61 179 129 149)(7 56 31 82 108 62 180 130 150)(8 57 32 83 109 63 161 131 151)(9 58 33 84 110 64 162 132 152)(10 59 34 85 111 65 163 133 153)(11 60 35 86 112 66 164 134 154)(12 41 36 87 113 67 165 135 155)(13 42 37 88 114 68 166 136 156)(14 43 38 89 115 69 167 137 157)(15 44 39 90 116 70 168 138 158)(16 45 40 91 117 71 169 139 159)(17 46 21 92 118 72 170 140 160)(18 47 22 93 119 73 171 121 141)(19 48 23 94 120 74 172 122 142)(20 49 24 95 101 75 173 123 143)
(1 154)(2 155)(3 156)(4 157)(5 158)(6 159)(7 160)(8 141)(9 142)(10 143)(11 144)(12 145)(13 146)(14 147)(15 148)(16 149)(17 150)(18 151)(19 152)(20 153)(21 180)(22 161)(23 162)(24 163)(25 164)(26 165)(27 166)(28 167)(29 168)(30 169)(31 170)(32 171)(33 172)(34 173)(35 174)(36 175)(37 176)(38 177)(39 178)(40 179)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 121)(58 122)(59 123)(60 124)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 81)(72 82)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 89)(80 90)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
G:=sub<Sym(180)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,50,25,96,102,76,174,124,144)(2,51,26,97,103,77,175,125,145)(3,52,27,98,104,78,176,126,146)(4,53,28,99,105,79,177,127,147)(5,54,29,100,106,80,178,128,148)(6,55,30,81,107,61,179,129,149)(7,56,31,82,108,62,180,130,150)(8,57,32,83,109,63,161,131,151)(9,58,33,84,110,64,162,132,152)(10,59,34,85,111,65,163,133,153)(11,60,35,86,112,66,164,134,154)(12,41,36,87,113,67,165,135,155)(13,42,37,88,114,68,166,136,156)(14,43,38,89,115,69,167,137,157)(15,44,39,90,116,70,168,138,158)(16,45,40,91,117,71,169,139,159)(17,46,21,92,118,72,170,140,160)(18,47,22,93,119,73,171,121,141)(19,48,23,94,120,74,172,122,142)(20,49,24,95,101,75,173,123,143), (1,154)(2,155)(3,156)(4,157)(5,158)(6,159)(7,160)(8,141)(9,142)(10,143)(11,144)(12,145)(13,146)(14,147)(15,148)(16,149)(17,150)(18,151)(19,152)(20,153)(21,180)(22,161)(23,162)(24,163)(25,164)(26,165)(27,166)(28,167)(29,168)(30,169)(31,170)(32,171)(33,172)(34,173)(35,174)(36,175)(37,176)(38,177)(39,178)(40,179)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,50,25,96,102,76,174,124,144)(2,51,26,97,103,77,175,125,145)(3,52,27,98,104,78,176,126,146)(4,53,28,99,105,79,177,127,147)(5,54,29,100,106,80,178,128,148)(6,55,30,81,107,61,179,129,149)(7,56,31,82,108,62,180,130,150)(8,57,32,83,109,63,161,131,151)(9,58,33,84,110,64,162,132,152)(10,59,34,85,111,65,163,133,153)(11,60,35,86,112,66,164,134,154)(12,41,36,87,113,67,165,135,155)(13,42,37,88,114,68,166,136,156)(14,43,38,89,115,69,167,137,157)(15,44,39,90,116,70,168,138,158)(16,45,40,91,117,71,169,139,159)(17,46,21,92,118,72,170,140,160)(18,47,22,93,119,73,171,121,141)(19,48,23,94,120,74,172,122,142)(20,49,24,95,101,75,173,123,143), (1,154)(2,155)(3,156)(4,157)(5,158)(6,159)(7,160)(8,141)(9,142)(10,143)(11,144)(12,145)(13,146)(14,147)(15,148)(16,149)(17,150)(18,151)(19,152)(20,153)(21,180)(22,161)(23,162)(24,163)(25,164)(26,165)(27,166)(28,167)(29,168)(30,169)(31,170)(32,171)(33,172)(34,173)(35,174)(36,175)(37,176)(38,177)(39,178)(40,179)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,50,25,96,102,76,174,124,144),(2,51,26,97,103,77,175,125,145),(3,52,27,98,104,78,176,126,146),(4,53,28,99,105,79,177,127,147),(5,54,29,100,106,80,178,128,148),(6,55,30,81,107,61,179,129,149),(7,56,31,82,108,62,180,130,150),(8,57,32,83,109,63,161,131,151),(9,58,33,84,110,64,162,132,152),(10,59,34,85,111,65,163,133,153),(11,60,35,86,112,66,164,134,154),(12,41,36,87,113,67,165,135,155),(13,42,37,88,114,68,166,136,156),(14,43,38,89,115,69,167,137,157),(15,44,39,90,116,70,168,138,158),(16,45,40,91,117,71,169,139,159),(17,46,21,92,118,72,170,140,160),(18,47,22,93,119,73,171,121,141),(19,48,23,94,120,74,172,122,142),(20,49,24,95,101,75,173,123,143)], [(1,154),(2,155),(3,156),(4,157),(5,158),(6,159),(7,160),(8,141),(9,142),(10,143),(11,144),(12,145),(13,146),(14,147),(15,148),(16,149),(17,150),(18,151),(19,152),(20,153),(21,180),(22,161),(23,162),(24,163),(25,164),(26,165),(27,166),(28,167),(29,168),(30,169),(31,170),(32,171),(33,172),(34,173),(35,174),(36,175),(37,176),(38,177),(39,178),(40,179),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,121),(58,122),(59,123),(60,124),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,81),(72,82),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,89),(80,90),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)]])
120 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 6 | 9A | 9B | 9C | 10A | 10B | 10C | 10D | 10E | ··· | 10L | 12A | 12B | 15A | 15B | 15C | 15D | 18A | 18B | 18C | 20A | ··· | 20H | 20I | ··· | 20P | 30A | 30B | 30C | 30D | 36A | ··· | 36F | 45A | ··· | 45L | 60A | ··· | 60H | 90A | ··· | 90L | 180A | ··· | 180X |
| order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 18 | 18 | 18 | 20 | ··· | 20 | 20 | ··· | 20 | 30 | 30 | 30 | 30 | 36 | ··· | 36 | 45 | ··· | 45 | 60 | ··· | 60 | 90 | ··· | 90 | 180 | ··· | 180 |
| size | 1 | 1 | 9 | 9 | 2 | 1 | 1 | 9 | 9 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 9 | ··· | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 9 | ··· | 9 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
120 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | ||||||||||||||
| image | C1 | C2 | C2 | C2 | C4 | C5 | C10 | C10 | C10 | C20 | S3 | D6 | D9 | C4×S3 | C5×S3 | D18 | S3×C10 | C4×D9 | C5×D9 | S3×C20 | C10×D9 | D9×C20 |
| kernel | D9×C20 | C5×Dic9 | C180 | C10×D9 | C5×D9 | C4×D9 | Dic9 | C36 | D18 | D9 | C60 | C30 | C20 | C15 | C12 | C10 | C6 | C5 | C4 | C3 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 16 | 1 | 1 | 3 | 2 | 4 | 3 | 4 | 6 | 12 | 8 | 12 | 24 |
Matrix representation of D9×C20 ►in GL3(𝔽181) generated by
| 139 | 0 | 0 |
| 0 | 162 | 0 |
| 0 | 0 | 162 |
| 1 | 0 | 0 |
| 0 | 177 | 131 |
| 0 | 50 | 127 |
| 180 | 0 | 0 |
| 0 | 54 | 177 |
| 0 | 50 | 127 |
G:=sub<GL(3,GF(181))| [139,0,0,0,162,0,0,0,162],[1,0,0,0,177,50,0,131,127],[180,0,0,0,54,50,0,177,127] >;
D9×C20 in GAP, Magma, Sage, TeX
D_9\times C_{20} % in TeX
G:=Group("D9xC20"); // GroupNames label
G:=SmallGroup(360,21);
// by ID
G=gap.SmallGroup(360,21);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-3,-3,127,6004,208,8645]);
// Polycyclic
G:=Group<a,b,c|a^20=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export