Extensions 1→N→G→Q→1 with N=C9×Dic5 and Q=C2

Direct product G=N×Q with N=C9×Dic5 and Q=C2
dρLabelID
C18×Dic5360C18xDic5360,18

Semidirect products G=N:Q with N=C9×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×Dic5)⋊1C2 = D9×Dic5φ: C2/C1C2 ⊆ Out C9×Dic51804-(C9xDic5):1C2360,8
(C9×Dic5)⋊2C2 = D90.C2φ: C2/C1C2 ⊆ Out C9×Dic51804+(C9xDic5):2C2360,9
(C9×Dic5)⋊3C2 = C5⋊D36φ: C2/C1C2 ⊆ Out C9×Dic51804+(C9xDic5):3C2360,10
(C9×Dic5)⋊4C2 = C9×C5⋊D4φ: C2/C1C2 ⊆ Out C9×Dic51802(C9xDic5):4C2360,19
(C9×Dic5)⋊5C2 = D5×C36φ: trivial image1802(C9xDic5):5C2360,16

Non-split extensions G=N.Q with N=C9×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×Dic5).1C2 = C45⋊Q8φ: C2/C1C2 ⊆ Out C9×Dic53604-(C9xDic5).1C2360,7
(C9×Dic5).2C2 = C45⋊C8φ: C2/C1C2 ⊆ Out C9×Dic53604(C9xDic5).2C2360,6
(C9×Dic5).3C2 = C9×Dic10φ: C2/C1C2 ⊆ Out C9×Dic53602(C9xDic5).3C2360,15
(C9×Dic5).4C2 = C9×C5⋊C8φ: C2/C1C2 ⊆ Out C9×Dic53604(C9xDic5).4C2360,5

׿
×
𝔽