Extensions 1→N→G→Q→1 with N=C9xDic5 and Q=C2

Direct product G=NxQ with N=C9xDic5 and Q=C2
dρLabelID
C18xDic5360C18xDic5360,18

Semidirect products G=N:Q with N=C9xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9xDic5):1C2 = D9xDic5φ: C2/C1C2 ⊆ Out C9xDic51804-(C9xDic5):1C2360,8
(C9xDic5):2C2 = D90.C2φ: C2/C1C2 ⊆ Out C9xDic51804+(C9xDic5):2C2360,9
(C9xDic5):3C2 = C5:D36φ: C2/C1C2 ⊆ Out C9xDic51804+(C9xDic5):3C2360,10
(C9xDic5):4C2 = C9xC5:D4φ: C2/C1C2 ⊆ Out C9xDic51802(C9xDic5):4C2360,19
(C9xDic5):5C2 = D5xC36φ: trivial image1802(C9xDic5):5C2360,16

Non-split extensions G=N.Q with N=C9xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9xDic5).1C2 = C45:Q8φ: C2/C1C2 ⊆ Out C9xDic53604-(C9xDic5).1C2360,7
(C9xDic5).2C2 = C45:C8φ: C2/C1C2 ⊆ Out C9xDic53604(C9xDic5).2C2360,6
(C9xDic5).3C2 = C9xDic10φ: C2/C1C2 ⊆ Out C9xDic53602(C9xDic5).3C2360,15
(C9xDic5).4C2 = C9xC5:C8φ: C2/C1C2 ⊆ Out C9xDic53604(C9xDic5).4C2360,5

׿
x
:
Z
F
o
wr
Q
<