Copied to
clipboard

G = D5×C36order 360 = 23·32·5

Direct product of C36 and D5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×C36, C202C18, C1806C2, C60.8C6, Dic52C18, D10.2C18, C18.14D10, C90.19C22, C52(C2×C36), C459(C2×C4), C3.(D5×C12), (D5×C12).C3, (C6×D5).7C6, C2.1(D5×C18), C12.7(C3×D5), C6.14(C6×D5), C30.14(C2×C6), C10.2(C2×C18), C15.2(C2×C12), (C9×Dic5)⋊5C2, (C3×D5).2C12, (D5×C18).4C2, (C3×Dic5).8C6, SmallGroup(360,16)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C36
C1C5C15C30C90D5×C18 — D5×C36
C5 — D5×C36
C1C36

Generators and relations for D5×C36
 G = < a,b,c | a36=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C2
5C4
5C22
5C6
5C6
5C2×C4
5C12
5C2×C6
5C18
5C18
5C2×C12
5C2×C18
5C36
5C2×C36

Smallest permutation representation of D5×C36
On 180 points
Generators in S180
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 135 153 40 83)(2 136 154 41 84)(3 137 155 42 85)(4 138 156 43 86)(5 139 157 44 87)(6 140 158 45 88)(7 141 159 46 89)(8 142 160 47 90)(9 143 161 48 91)(10 144 162 49 92)(11 109 163 50 93)(12 110 164 51 94)(13 111 165 52 95)(14 112 166 53 96)(15 113 167 54 97)(16 114 168 55 98)(17 115 169 56 99)(18 116 170 57 100)(19 117 171 58 101)(20 118 172 59 102)(21 119 173 60 103)(22 120 174 61 104)(23 121 175 62 105)(24 122 176 63 106)(25 123 177 64 107)(26 124 178 65 108)(27 125 179 66 73)(28 126 180 67 74)(29 127 145 68 75)(30 128 146 69 76)(31 129 147 70 77)(32 130 148 71 78)(33 131 149 72 79)(34 132 150 37 80)(35 133 151 38 81)(36 134 152 39 82)
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 91)(10 92)(11 93)(12 94)(13 95)(14 96)(15 97)(16 98)(17 99)(18 100)(19 101)(20 102)(21 103)(22 104)(23 105)(24 106)(25 107)(26 108)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 79)(34 80)(35 81)(36 82)(37 132)(38 133)(39 134)(40 135)(41 136)(42 137)(43 138)(44 139)(45 140)(46 141)(47 142)(48 143)(49 144)(50 109)(51 110)(52 111)(53 112)(54 113)(55 114)(56 115)(57 116)(58 117)(59 118)(60 119)(61 120)(62 121)(63 122)(64 123)(65 124)(66 125)(67 126)(68 127)(69 128)(70 129)(71 130)(72 131)

G:=sub<Sym(180)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,135,153,40,83)(2,136,154,41,84)(3,137,155,42,85)(4,138,156,43,86)(5,139,157,44,87)(6,140,158,45,88)(7,141,159,46,89)(8,142,160,47,90)(9,143,161,48,91)(10,144,162,49,92)(11,109,163,50,93)(12,110,164,51,94)(13,111,165,52,95)(14,112,166,53,96)(15,113,167,54,97)(16,114,168,55,98)(17,115,169,56,99)(18,116,170,57,100)(19,117,171,58,101)(20,118,172,59,102)(21,119,173,60,103)(22,120,174,61,104)(23,121,175,62,105)(24,122,176,63,106)(25,123,177,64,107)(26,124,178,65,108)(27,125,179,66,73)(28,126,180,67,74)(29,127,145,68,75)(30,128,146,69,76)(31,129,147,70,77)(32,130,148,71,78)(33,131,149,72,79)(34,132,150,37,80)(35,133,151,38,81)(36,134,152,39,82), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,97)(16,98)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,81)(36,82)(37,132)(38,133)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,109)(51,110)(52,111)(53,112)(54,113)(55,114)(56,115)(57,116)(58,117)(59,118)(60,119)(61,120)(62,121)(63,122)(64,123)(65,124)(66,125)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,135,153,40,83)(2,136,154,41,84)(3,137,155,42,85)(4,138,156,43,86)(5,139,157,44,87)(6,140,158,45,88)(7,141,159,46,89)(8,142,160,47,90)(9,143,161,48,91)(10,144,162,49,92)(11,109,163,50,93)(12,110,164,51,94)(13,111,165,52,95)(14,112,166,53,96)(15,113,167,54,97)(16,114,168,55,98)(17,115,169,56,99)(18,116,170,57,100)(19,117,171,58,101)(20,118,172,59,102)(21,119,173,60,103)(22,120,174,61,104)(23,121,175,62,105)(24,122,176,63,106)(25,123,177,64,107)(26,124,178,65,108)(27,125,179,66,73)(28,126,180,67,74)(29,127,145,68,75)(30,128,146,69,76)(31,129,147,70,77)(32,130,148,71,78)(33,131,149,72,79)(34,132,150,37,80)(35,133,151,38,81)(36,134,152,39,82), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,97)(16,98)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,81)(36,82)(37,132)(38,133)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,109)(51,110)(52,111)(53,112)(54,113)(55,114)(56,115)(57,116)(58,117)(59,118)(60,119)(61,120)(62,121)(63,122)(64,123)(65,124)(66,125)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,135,153,40,83),(2,136,154,41,84),(3,137,155,42,85),(4,138,156,43,86),(5,139,157,44,87),(6,140,158,45,88),(7,141,159,46,89),(8,142,160,47,90),(9,143,161,48,91),(10,144,162,49,92),(11,109,163,50,93),(12,110,164,51,94),(13,111,165,52,95),(14,112,166,53,96),(15,113,167,54,97),(16,114,168,55,98),(17,115,169,56,99),(18,116,170,57,100),(19,117,171,58,101),(20,118,172,59,102),(21,119,173,60,103),(22,120,174,61,104),(23,121,175,62,105),(24,122,176,63,106),(25,123,177,64,107),(26,124,178,65,108),(27,125,179,66,73),(28,126,180,67,74),(29,127,145,68,75),(30,128,146,69,76),(31,129,147,70,77),(32,130,148,71,78),(33,131,149,72,79),(34,132,150,37,80),(35,133,151,38,81),(36,134,152,39,82)], [(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,91),(10,92),(11,93),(12,94),(13,95),(14,96),(15,97),(16,98),(17,99),(18,100),(19,101),(20,102),(21,103),(22,104),(23,105),(24,106),(25,107),(26,108),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,79),(34,80),(35,81),(36,82),(37,132),(38,133),(39,134),(40,135),(41,136),(42,137),(43,138),(44,139),(45,140),(46,141),(47,142),(48,143),(49,144),(50,109),(51,110),(52,111),(53,112),(54,113),(55,114),(56,115),(57,116),(58,117),(59,118),(60,119),(61,120),(62,121),(63,122),(64,123),(65,124),(66,125),(67,126),(68,127),(69,128),(70,129),(71,130),(72,131)]])

144 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D5A5B6A6B6C6D6E6F9A···9F10A10B12A12B12C12D12E12F12G12H15A15B15C15D18A···18F18G···18R20A20B20C20D30A30B30C30D36A···36L36M···36X45A···45L60A···60H90A···90L180A···180X
order1222334444556666669···9101012121212121212121515151518···1818···18202020203030303036···3636···3645···4560···6090···90180···180
size1155111155221155551···1221111555522221···15···5222222221···15···52···22···22···22···2

144 irreducible representations

dim111111111111111222222222
type++++++
imageC1C2C2C2C3C4C6C6C6C9C12C18C18C18C36D5D10C3×D5C4×D5C6×D5C9×D5D5×C12D5×C18D5×C36
kernelD5×C36C9×Dic5C180D5×C18D5×C12C9×D5C3×Dic5C60C6×D5C4×D5C3×D5Dic5C20D10D5C36C18C12C9C6C4C3C2C1
# reps1111242226866624224441281224

Matrix representation of D5×C36 in GL3(𝔽181) generated by

14200
070
007
,
100
01671
01800
,
18000
01167
00180
G:=sub<GL(3,GF(181))| [142,0,0,0,7,0,0,0,7],[1,0,0,0,167,180,0,1,0],[180,0,0,0,1,0,0,167,180] >;

D5×C36 in GAP, Magma, Sage, TeX

D_5\times C_{36}
% in TeX

G:=Group("D5xC36");
// GroupNames label

G:=SmallGroup(360,16);
// by ID

G=gap.SmallGroup(360,16);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,79,122,10373]);
// Polycyclic

G:=Group<a,b,c|a^36=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C36 in TeX

׿
×
𝔽