Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D23

Direct product G=N×Q with N=C2×C4 and Q=D23
dρLabelID
C2×C4×D23184C2xC4xD23368,28

Semidirect products G=N:Q with N=C2×C4 and Q=D23
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D23 = D46⋊C4φ: D23/C23C2 ⊆ Aut C2×C4184(C2xC4):1D23368,13
(C2×C4)⋊2D23 = C2×D92φ: D23/C23C2 ⊆ Aut C2×C4184(C2xC4):2D23368,29
(C2×C4)⋊3D23 = D925C2φ: D23/C23C2 ⊆ Aut C2×C41842(C2xC4):3D23368,30

Non-split extensions G=N.Q with N=C2×C4 and Q=D23
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D23 = Dic23⋊C4φ: D23/C23C2 ⊆ Aut C2×C4368(C2xC4).1D23368,11
(C2×C4).2D23 = C92.C4φ: D23/C23C2 ⊆ Aut C2×C41842(C2xC4).2D23368,9
(C2×C4).3D23 = C92⋊C4φ: D23/C23C2 ⊆ Aut C2×C4368(C2xC4).3D23368,12
(C2×C4).4D23 = C2×Dic46φ: D23/C23C2 ⊆ Aut C2×C4368(C2xC4).4D23368,27
(C2×C4).5D23 = C2×C23⋊C8central extension (φ=1)368(C2xC4).5D23368,8
(C2×C4).6D23 = C4×Dic23central extension (φ=1)368(C2xC4).6D23368,10

׿
×
𝔽