Copied to
clipboard

G = C2×C4×D23order 368 = 24·23

Direct product of C2×C4 and D23

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C4×D23, C923C22, C46.2C23, C22.9D46, D46.4C22, Dic233C22, C461(C2×C4), (C2×C92)⋊5C2, C231(C22×C4), (C2×Dic23)⋊5C2, (C2×C46).9C22, C2.1(C22×D23), (C22×D23).2C2, SmallGroup(368,28)

Series: Derived Chief Lower central Upper central

C1C23 — C2×C4×D23
C1C23C46D46C22×D23 — C2×C4×D23
C23 — C2×C4×D23
C1C2×C4

Generators and relations for C2×C4×D23
 G = < a,b,c,d | a2=b4=c23=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 472 in 54 conjugacy classes, 35 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C22×C4, C23, D23, C46, C46, Dic23, C92, D46, C2×C46, C4×D23, C2×Dic23, C2×C92, C22×D23, C2×C4×D23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, D23, D46, C4×D23, C22×D23, C2×C4×D23

Smallest permutation representation of C2×C4×D23
On 184 points
Generators in S184
(1 113)(2 114)(3 115)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 100)(12 101)(13 102)(14 103)(15 104)(16 105)(17 106)(18 107)(19 108)(20 109)(21 110)(22 111)(23 112)(24 121)(25 122)(26 123)(27 124)(28 125)(29 126)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 137)(41 138)(42 116)(43 117)(44 118)(45 119)(46 120)(47 150)(48 151)(49 152)(50 153)(51 154)(52 155)(53 156)(54 157)(55 158)(56 159)(57 160)(58 161)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 169)(71 170)(72 171)(73 172)(74 173)(75 174)(76 175)(77 176)(78 177)(79 178)(80 179)(81 180)(82 181)(83 182)(84 183)(85 184)(86 162)(87 163)(88 164)(89 165)(90 166)(91 167)(92 168)
(1 71 33 49)(2 72 34 50)(3 73 35 51)(4 74 36 52)(5 75 37 53)(6 76 38 54)(7 77 39 55)(8 78 40 56)(9 79 41 57)(10 80 42 58)(11 81 43 59)(12 82 44 60)(13 83 45 61)(14 84 46 62)(15 85 24 63)(16 86 25 64)(17 87 26 65)(18 88 27 66)(19 89 28 67)(20 90 29 68)(21 91 30 69)(22 92 31 47)(23 70 32 48)(93 173 133 155)(94 174 134 156)(95 175 135 157)(96 176 136 158)(97 177 137 159)(98 178 138 160)(99 179 116 161)(100 180 117 139)(101 181 118 140)(102 182 119 141)(103 183 120 142)(104 184 121 143)(105 162 122 144)(106 163 123 145)(107 164 124 146)(108 165 125 147)(109 166 126 148)(110 167 127 149)(111 168 128 150)(112 169 129 151)(113 170 130 152)(114 171 131 153)(115 172 132 154)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)(139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161)(162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(24 41)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(42 46)(43 45)(47 50)(48 49)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(57 63)(58 62)(59 61)(70 71)(72 92)(73 91)(74 90)(75 89)(76 88)(77 87)(78 86)(79 85)(80 84)(81 83)(93 109)(94 108)(95 107)(96 106)(97 105)(98 104)(99 103)(100 102)(110 115)(111 114)(112 113)(116 120)(117 119)(121 138)(122 137)(123 136)(124 135)(125 134)(126 133)(127 132)(128 131)(129 130)(139 141)(142 161)(143 160)(144 159)(145 158)(146 157)(147 156)(148 155)(149 154)(150 153)(151 152)(162 177)(163 176)(164 175)(165 174)(166 173)(167 172)(168 171)(169 170)(178 184)(179 183)(180 182)

G:=sub<Sym(184)| (1,113)(2,114)(3,115)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,121)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,116)(43,117)(44,118)(45,119)(46,120)(47,150)(48,151)(49,152)(50,153)(51,154)(52,155)(53,156)(54,157)(55,158)(56,159)(57,160)(58,161)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,169)(71,170)(72,171)(73,172)(74,173)(75,174)(76,175)(77,176)(78,177)(79,178)(80,179)(81,180)(82,181)(83,182)(84,183)(85,184)(86,162)(87,163)(88,164)(89,165)(90,166)(91,167)(92,168), (1,71,33,49)(2,72,34,50)(3,73,35,51)(4,74,36,52)(5,75,37,53)(6,76,38,54)(7,77,39,55)(8,78,40,56)(9,79,41,57)(10,80,42,58)(11,81,43,59)(12,82,44,60)(13,83,45,61)(14,84,46,62)(15,85,24,63)(16,86,25,64)(17,87,26,65)(18,88,27,66)(19,89,28,67)(20,90,29,68)(21,91,30,69)(22,92,31,47)(23,70,32,48)(93,173,133,155)(94,174,134,156)(95,175,135,157)(96,176,136,158)(97,177,137,159)(98,178,138,160)(99,179,116,161)(100,180,117,139)(101,181,118,140)(102,182,119,141)(103,183,120,142)(104,184,121,143)(105,162,122,144)(106,163,123,145)(107,164,124,146)(108,165,125,147)(109,166,126,148)(110,167,127,149)(111,168,128,150)(112,169,129,151)(113,170,130,152)(114,171,131,153)(115,172,132,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(42,46)(43,45)(47,50)(48,49)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(70,71)(72,92)(73,91)(74,90)(75,89)(76,88)(77,87)(78,86)(79,85)(80,84)(81,83)(93,109)(94,108)(95,107)(96,106)(97,105)(98,104)(99,103)(100,102)(110,115)(111,114)(112,113)(116,120)(117,119)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)(139,141)(142,161)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(162,177)(163,176)(164,175)(165,174)(166,173)(167,172)(168,171)(169,170)(178,184)(179,183)(180,182)>;

G:=Group( (1,113)(2,114)(3,115)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,121)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,116)(43,117)(44,118)(45,119)(46,120)(47,150)(48,151)(49,152)(50,153)(51,154)(52,155)(53,156)(54,157)(55,158)(56,159)(57,160)(58,161)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,169)(71,170)(72,171)(73,172)(74,173)(75,174)(76,175)(77,176)(78,177)(79,178)(80,179)(81,180)(82,181)(83,182)(84,183)(85,184)(86,162)(87,163)(88,164)(89,165)(90,166)(91,167)(92,168), (1,71,33,49)(2,72,34,50)(3,73,35,51)(4,74,36,52)(5,75,37,53)(6,76,38,54)(7,77,39,55)(8,78,40,56)(9,79,41,57)(10,80,42,58)(11,81,43,59)(12,82,44,60)(13,83,45,61)(14,84,46,62)(15,85,24,63)(16,86,25,64)(17,87,26,65)(18,88,27,66)(19,89,28,67)(20,90,29,68)(21,91,30,69)(22,92,31,47)(23,70,32,48)(93,173,133,155)(94,174,134,156)(95,175,135,157)(96,176,136,158)(97,177,137,159)(98,178,138,160)(99,179,116,161)(100,180,117,139)(101,181,118,140)(102,182,119,141)(103,183,120,142)(104,184,121,143)(105,162,122,144)(106,163,123,145)(107,164,124,146)(108,165,125,147)(109,166,126,148)(110,167,127,149)(111,168,128,150)(112,169,129,151)(113,170,130,152)(114,171,131,153)(115,172,132,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(42,46)(43,45)(47,50)(48,49)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(70,71)(72,92)(73,91)(74,90)(75,89)(76,88)(77,87)(78,86)(79,85)(80,84)(81,83)(93,109)(94,108)(95,107)(96,106)(97,105)(98,104)(99,103)(100,102)(110,115)(111,114)(112,113)(116,120)(117,119)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)(139,141)(142,161)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(162,177)(163,176)(164,175)(165,174)(166,173)(167,172)(168,171)(169,170)(178,184)(179,183)(180,182) );

G=PermutationGroup([[(1,113),(2,114),(3,115),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,100),(12,101),(13,102),(14,103),(15,104),(16,105),(17,106),(18,107),(19,108),(20,109),(21,110),(22,111),(23,112),(24,121),(25,122),(26,123),(27,124),(28,125),(29,126),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,137),(41,138),(42,116),(43,117),(44,118),(45,119),(46,120),(47,150),(48,151),(49,152),(50,153),(51,154),(52,155),(53,156),(54,157),(55,158),(56,159),(57,160),(58,161),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,169),(71,170),(72,171),(73,172),(74,173),(75,174),(76,175),(77,176),(78,177),(79,178),(80,179),(81,180),(82,181),(83,182),(84,183),(85,184),(86,162),(87,163),(88,164),(89,165),(90,166),(91,167),(92,168)], [(1,71,33,49),(2,72,34,50),(3,73,35,51),(4,74,36,52),(5,75,37,53),(6,76,38,54),(7,77,39,55),(8,78,40,56),(9,79,41,57),(10,80,42,58),(11,81,43,59),(12,82,44,60),(13,83,45,61),(14,84,46,62),(15,85,24,63),(16,86,25,64),(17,87,26,65),(18,88,27,66),(19,89,28,67),(20,90,29,68),(21,91,30,69),(22,92,31,47),(23,70,32,48),(93,173,133,155),(94,174,134,156),(95,175,135,157),(96,176,136,158),(97,177,137,159),(98,178,138,160),(99,179,116,161),(100,180,117,139),(101,181,118,140),(102,182,119,141),(103,183,120,142),(104,184,121,143),(105,162,122,144),(106,163,123,145),(107,164,124,146),(108,165,125,147),(109,166,126,148),(110,167,127,149),(111,168,128,150),(112,169,129,151),(113,170,130,152),(114,171,131,153),(115,172,132,154)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138),(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161),(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(24,41),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(42,46),(43,45),(47,50),(48,49),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(57,63),(58,62),(59,61),(70,71),(72,92),(73,91),(74,90),(75,89),(76,88),(77,87),(78,86),(79,85),(80,84),(81,83),(93,109),(94,108),(95,107),(96,106),(97,105),(98,104),(99,103),(100,102),(110,115),(111,114),(112,113),(116,120),(117,119),(121,138),(122,137),(123,136),(124,135),(125,134),(126,133),(127,132),(128,131),(129,130),(139,141),(142,161),(143,160),(144,159),(145,158),(146,157),(147,156),(148,155),(149,154),(150,153),(151,152),(162,177),(163,176),(164,175),(165,174),(166,173),(167,172),(168,171),(169,170),(178,184),(179,183),(180,182)]])

104 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H23A···23K46A···46AG92A···92AR
order122222224444444423···2346···4692···92
size1111232323231111232323232···22···22···2

104 irreducible representations

dim1111112222
type++++++++
imageC1C2C2C2C2C4D23D46D46C4×D23
kernelC2×C4×D23C4×D23C2×Dic23C2×C92C22×D23D46C2×C4C4C22C2
# reps14111811221144

Matrix representation of C2×C4×D23 in GL3(𝔽277) generated by

27600
02760
00276
,
27600
02170
00217
,
100
01481
0180194
,
27600
012118
0110156
G:=sub<GL(3,GF(277))| [276,0,0,0,276,0,0,0,276],[276,0,0,0,217,0,0,0,217],[1,0,0,0,148,180,0,1,194],[276,0,0,0,121,110,0,18,156] >;

C2×C4×D23 in GAP, Magma, Sage, TeX

C_2\times C_4\times D_{23}
% in TeX

G:=Group("C2xC4xD23");
// GroupNames label

G:=SmallGroup(368,28);
// by ID

G=gap.SmallGroup(368,28);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-23,42,8804]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^23=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽