Extensions 1→N→G→Q→1 with N=C3×Dic5 and Q=S3

Direct product G=N×Q with N=C3×Dic5 and Q=S3
dρLabelID
C3×S3×Dic51204C3xS3xDic5360,59

Semidirect products G=N:Q with N=C3×Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Dic5)⋊1S3 = C3⋊S3×Dic5φ: S3/C3C2 ⊆ Out C3×Dic5180(C3xDic5):1S3360,66
(C3×Dic5)⋊2S3 = C30.D6φ: S3/C3C2 ⊆ Out C3×Dic5180(C3xDic5):2S3360,67
(C3×Dic5)⋊3S3 = C15⋊D12φ: S3/C3C2 ⊆ Out C3×Dic5180(C3xDic5):3S3360,70
(C3×Dic5)⋊4S3 = C3×C5⋊D12φ: S3/C3C2 ⊆ Out C3×Dic51204(C3xDic5):4S3360,63
(C3×Dic5)⋊5S3 = C3×D30.C2φ: trivial image1204(C3xDic5):5S3360,60

Non-split extensions G=N.Q with N=C3×Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Dic5).1S3 = C45⋊Q8φ: S3/C3C2 ⊆ Out C3×Dic53604-(C3xDic5).1S3360,7
(C3×Dic5).2S3 = D9×Dic5φ: S3/C3C2 ⊆ Out C3×Dic51804-(C3xDic5).2S3360,8
(C3×Dic5).3S3 = D90.C2φ: S3/C3C2 ⊆ Out C3×Dic51804+(C3xDic5).3S3360,9
(C3×Dic5).4S3 = C5⋊D36φ: S3/C3C2 ⊆ Out C3×Dic51804+(C3xDic5).4S3360,10
(C3×Dic5).5S3 = C15⋊Dic6φ: S3/C3C2 ⊆ Out C3×Dic5360(C3xDic5).5S3360,71
(C3×Dic5).6S3 = C3×C15⋊Q8φ: S3/C3C2 ⊆ Out C3×Dic51204(C3xDic5).6S3360,64
(C3×Dic5).7S3 = C45⋊C8φ: S3/C3C2 ⊆ Out C3×Dic53604(C3xDic5).7S3360,6
(C3×Dic5).8S3 = C30.Dic3φ: S3/C3C2 ⊆ Out C3×Dic5360(C3xDic5).8S3360,54
(C3×Dic5).9S3 = C3×C15⋊C8φ: S3/C3C2 ⊆ Out C3×Dic51204(C3xDic5).9S3360,53

׿
×
𝔽