Copied to
clipboard

G = C3xS3xDic5order 360 = 23·32·5

Direct product of C3, S3 and Dic5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3xS3xDic5, C30.29D6, Dic15:3C6, C5:4(S3xC12), D6.(C3xD5), (S3xC10).C6, C6.2(C6xD5), (C5xS3):2C12, (S3xC15):4C4, C15:17(C4xS3), C15:5(C2xC12), C10.2(S3xC6), C30.2(C2xC6), (S3xC6).2D5, C3:1(C6xDic5), C6.29(S3xD5), (S3xC30).1C2, (C3xDic5):1C6, (C3xC6).14D10, C32:4(C2xDic5), (C3xDic15):3C2, (C3xC30).2C22, (C32xDic5):1C2, C2.2(C3xS3xD5), (C3xC15):14(C2xC4), SmallGroup(360,59)

Series: Derived Chief Lower central Upper central

C1C15 — C3xS3xDic5
C1C5C15C30C3xC30C32xDic5 — C3xS3xDic5
C15 — C3xS3xDic5
C1C6

Generators and relations for C3xS3xDic5
 G = < a,b,c,d,e | a3=b3=c2=d10=1, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 204 in 70 conjugacy classes, 36 normal (28 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, C2xC4, C32, C10, C10, Dic3, C12, D6, C2xC6, C15, C15, C3xS3, C3xC6, Dic5, Dic5, C2xC10, C4xS3, C2xC12, C5xS3, C30, C30, C3xDic3, C3xC12, S3xC6, C2xDic5, C3xC15, C3xDic5, C3xDic5, Dic15, S3xC10, C2xC30, S3xC12, S3xC15, C3xC30, S3xDic5, C6xDic5, C32xDic5, C3xDic15, S3xC30, C3xS3xDic5
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D5, C12, D6, C2xC6, C3xS3, Dic5, D10, C4xS3, C2xC12, C3xD5, S3xC6, C2xDic5, C3xDic5, S3xD5, C6xD5, S3xC12, S3xDic5, C6xDic5, C3xS3xD5, C3xS3xDic5

Smallest permutation representation of C3xS3xDic5
On 120 points
Generators in S120
(1 25 33)(2 26 34)(3 27 35)(4 28 36)(5 29 37)(6 30 38)(7 21 39)(8 22 40)(9 23 31)(10 24 32)(11 111 107)(12 112 108)(13 113 109)(14 114 110)(15 115 101)(16 116 102)(17 117 103)(18 118 104)(19 119 105)(20 120 106)(41 63 52)(42 64 53)(43 65 54)(44 66 55)(45 67 56)(46 68 57)(47 69 58)(48 70 59)(49 61 60)(50 62 51)(71 96 85)(72 97 86)(73 98 87)(74 99 88)(75 100 89)(76 91 90)(77 92 81)(78 93 82)(79 94 83)(80 95 84)
(1 25 33)(2 26 34)(3 27 35)(4 28 36)(5 29 37)(6 30 38)(7 21 39)(8 22 40)(9 23 31)(10 24 32)(11 107 111)(12 108 112)(13 109 113)(14 110 114)(15 101 115)(16 102 116)(17 103 117)(18 104 118)(19 105 119)(20 106 120)(41 52 63)(42 53 64)(43 54 65)(44 55 66)(45 56 67)(46 57 68)(47 58 69)(48 59 70)(49 60 61)(50 51 62)(71 96 85)(72 97 86)(73 98 87)(74 99 88)(75 100 89)(76 91 90)(77 92 81)(78 93 82)(79 94 83)(80 95 84)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 51)(9 52)(10 53)(11 97)(12 98)(13 99)(14 100)(15 91)(16 92)(17 93)(18 94)(19 95)(20 96)(21 49)(22 50)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 61)(40 62)(71 106)(72 107)(73 108)(74 109)(75 110)(76 101)(77 102)(78 103)(79 104)(80 105)(81 116)(82 117)(83 118)(84 119)(85 120)(86 111)(87 112)(88 113)(89 114)(90 115)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 86 6 81)(2 85 7 90)(3 84 8 89)(4 83 9 88)(5 82 10 87)(11 70 16 65)(12 69 17 64)(13 68 18 63)(14 67 19 62)(15 66 20 61)(21 76 26 71)(22 75 27 80)(23 74 28 79)(24 73 29 78)(25 72 30 77)(31 99 36 94)(32 98 37 93)(33 97 38 92)(34 96 39 91)(35 95 40 100)(41 109 46 104)(42 108 47 103)(43 107 48 102)(44 106 49 101)(45 105 50 110)(51 114 56 119)(52 113 57 118)(53 112 58 117)(54 111 59 116)(55 120 60 115)

G:=sub<Sym(120)| (1,25,33)(2,26,34)(3,27,35)(4,28,36)(5,29,37)(6,30,38)(7,21,39)(8,22,40)(9,23,31)(10,24,32)(11,111,107)(12,112,108)(13,113,109)(14,114,110)(15,115,101)(16,116,102)(17,117,103)(18,118,104)(19,119,105)(20,120,106)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,25,33)(2,26,34)(3,27,35)(4,28,36)(5,29,37)(6,30,38)(7,21,39)(8,22,40)(9,23,31)(10,24,32)(11,107,111)(12,108,112)(13,109,113)(14,110,114)(15,101,115)(16,102,116)(17,103,117)(18,104,118)(19,105,119)(20,106,120)(41,52,63)(42,53,64)(43,54,65)(44,55,66)(45,56,67)(46,57,68)(47,58,69)(48,59,70)(49,60,61)(50,51,62)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,97)(12,98)(13,99)(14,100)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,49)(22,50)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,61)(40,62)(71,106)(72,107)(73,108)(74,109)(75,110)(76,101)(77,102)(78,103)(79,104)(80,105)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,86,6,81)(2,85,7,90)(3,84,8,89)(4,83,9,88)(5,82,10,87)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,76,26,71)(22,75,27,80)(23,74,28,79)(24,73,29,78)(25,72,30,77)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115)>;

G:=Group( (1,25,33)(2,26,34)(3,27,35)(4,28,36)(5,29,37)(6,30,38)(7,21,39)(8,22,40)(9,23,31)(10,24,32)(11,111,107)(12,112,108)(13,113,109)(14,114,110)(15,115,101)(16,116,102)(17,117,103)(18,118,104)(19,119,105)(20,120,106)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,25,33)(2,26,34)(3,27,35)(4,28,36)(5,29,37)(6,30,38)(7,21,39)(8,22,40)(9,23,31)(10,24,32)(11,107,111)(12,108,112)(13,109,113)(14,110,114)(15,101,115)(16,102,116)(17,103,117)(18,104,118)(19,105,119)(20,106,120)(41,52,63)(42,53,64)(43,54,65)(44,55,66)(45,56,67)(46,57,68)(47,58,69)(48,59,70)(49,60,61)(50,51,62)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,97)(12,98)(13,99)(14,100)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,49)(22,50)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,61)(40,62)(71,106)(72,107)(73,108)(74,109)(75,110)(76,101)(77,102)(78,103)(79,104)(80,105)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,86,6,81)(2,85,7,90)(3,84,8,89)(4,83,9,88)(5,82,10,87)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,76,26,71)(22,75,27,80)(23,74,28,79)(24,73,29,78)(25,72,30,77)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115) );

G=PermutationGroup([[(1,25,33),(2,26,34),(3,27,35),(4,28,36),(5,29,37),(6,30,38),(7,21,39),(8,22,40),(9,23,31),(10,24,32),(11,111,107),(12,112,108),(13,113,109),(14,114,110),(15,115,101),(16,116,102),(17,117,103),(18,118,104),(19,119,105),(20,120,106),(41,63,52),(42,64,53),(43,65,54),(44,66,55),(45,67,56),(46,68,57),(47,69,58),(48,70,59),(49,61,60),(50,62,51),(71,96,85),(72,97,86),(73,98,87),(74,99,88),(75,100,89),(76,91,90),(77,92,81),(78,93,82),(79,94,83),(80,95,84)], [(1,25,33),(2,26,34),(3,27,35),(4,28,36),(5,29,37),(6,30,38),(7,21,39),(8,22,40),(9,23,31),(10,24,32),(11,107,111),(12,108,112),(13,109,113),(14,110,114),(15,101,115),(16,102,116),(17,103,117),(18,104,118),(19,105,119),(20,106,120),(41,52,63),(42,53,64),(43,54,65),(44,55,66),(45,56,67),(46,57,68),(47,58,69),(48,59,70),(49,60,61),(50,51,62),(71,96,85),(72,97,86),(73,98,87),(74,99,88),(75,100,89),(76,91,90),(77,92,81),(78,93,82),(79,94,83),(80,95,84)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,51),(9,52),(10,53),(11,97),(12,98),(13,99),(14,100),(15,91),(16,92),(17,93),(18,94),(19,95),(20,96),(21,49),(22,50),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,61),(40,62),(71,106),(72,107),(73,108),(74,109),(75,110),(76,101),(77,102),(78,103),(79,104),(80,105),(81,116),(82,117),(83,118),(84,119),(85,120),(86,111),(87,112),(88,113),(89,114),(90,115)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,86,6,81),(2,85,7,90),(3,84,8,89),(4,83,9,88),(5,82,10,87),(11,70,16,65),(12,69,17,64),(13,68,18,63),(14,67,19,62),(15,66,20,61),(21,76,26,71),(22,75,27,80),(23,74,28,79),(24,73,29,78),(25,72,30,77),(31,99,36,94),(32,98,37,93),(33,97,38,92),(34,96,39,91),(35,95,40,100),(41,109,46,104),(42,108,47,103),(43,107,48,102),(44,106,49,101),(45,105,50,110),(51,114,56,119),(52,113,57,118),(53,112,58,117),(54,111,59,116),(55,120,60,115)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D5A5B6A6B6C6D6E6F6G6H6I10A10B10C10D10E10F12A12B12C12D12E···12J12K12L12M12N15A15B15C15D15E···15J30A30B30C30D30E···30J30K···30R
order1222333334444556666666661010101010101212121212···12121212121515151515···153030303030···3030···30
size11331122255151522112223333226666555510···101515151522224···422224···46···6

72 irreducible representations

dim11111111112222222222224444
type+++++++-++-
imageC1C2C2C2C3C4C6C6C6C12S3D5D6C3xS3Dic5D10C4xS3C3xD5S3xC6C3xDic5C6xD5S3xC12S3xD5S3xDic5C3xS3xD5C3xS3xDic5
kernelC3xS3xDic5C32xDic5C3xDic15S3xC30S3xDic5S3xC15C3xDic5Dic15S3xC10C5xS3C3xDic5S3xC6C30Dic5C3xS3C3xC6C15D6C10S3C6C5C6C3C2C1
# reps11112422281212422428442244

Matrix representation of C3xS3xDic5 in GL4(F61) generated by

1000
0100
00470
00047
,
1000
0100
00470
001313
,
1000
0100
00149
00060
,
06000
14400
00600
00060
,
575700
50400
00110
00011
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,47,0,0,0,0,47],[1,0,0,0,0,1,0,0,0,0,47,13,0,0,0,13],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,49,60],[0,1,0,0,60,44,0,0,0,0,60,0,0,0,0,60],[57,50,0,0,57,4,0,0,0,0,11,0,0,0,0,11] >;

C3xS3xDic5 in GAP, Magma, Sage, TeX

C_3\times S_3\times {\rm Dic}_5
% in TeX

G:=Group("C3xS3xDic5");
// GroupNames label

G:=SmallGroup(360,59);
// by ID

G=gap.SmallGroup(360,59);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,72,730,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^10=1,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<