extension | φ:Q→Aut N | d | ρ | Label | ID |
C46.1(C2×C4) = C8×D23 | φ: C2×C4/C4 → C2 ⊆ Aut C46 | 184 | 2 | C46.1(C2xC4) | 368,3 |
C46.2(C2×C4) = C8⋊D23 | φ: C2×C4/C4 → C2 ⊆ Aut C46 | 184 | 2 | C46.2(C2xC4) | 368,4 |
C46.3(C2×C4) = C4×Dic23 | φ: C2×C4/C4 → C2 ⊆ Aut C46 | 368 | | C46.3(C2xC4) | 368,10 |
C46.4(C2×C4) = Dic23⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C46 | 368 | | C46.4(C2xC4) | 368,11 |
C46.5(C2×C4) = D46⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C46 | 184 | | C46.5(C2xC4) | 368,13 |
C46.6(C2×C4) = C2×C23⋊C8 | φ: C2×C4/C22 → C2 ⊆ Aut C46 | 368 | | C46.6(C2xC4) | 368,8 |
C46.7(C2×C4) = C92.C4 | φ: C2×C4/C22 → C2 ⊆ Aut C46 | 184 | 2 | C46.7(C2xC4) | 368,9 |
C46.8(C2×C4) = C92⋊C4 | φ: C2×C4/C22 → C2 ⊆ Aut C46 | 368 | | C46.8(C2xC4) | 368,12 |
C46.9(C2×C4) = C23.D23 | φ: C2×C4/C22 → C2 ⊆ Aut C46 | 184 | | C46.9(C2xC4) | 368,18 |
C46.10(C2×C4) = C22⋊C4×C23 | central extension (φ=1) | 184 | | C46.10(C2xC4) | 368,20 |
C46.11(C2×C4) = C4⋊C4×C23 | central extension (φ=1) | 368 | | C46.11(C2xC4) | 368,21 |
C46.12(C2×C4) = M4(2)×C23 | central extension (φ=1) | 184 | 2 | C46.12(C2xC4) | 368,23 |