Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C46

Direct product G=N×Q with N=C4 and Q=C2×C46
dρLabelID
C22×C92368C2^2xC92368,37

Semidirect products G=N:Q with N=C4 and Q=C2×C46
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C46) = D4×C46φ: C2×C46/C46C2 ⊆ Aut C4184C4:(C2xC46)368,38

Non-split extensions G=N.Q with N=C4 and Q=C2×C46
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C46) = D8×C23φ: C2×C46/C46C2 ⊆ Aut C41842C4.1(C2xC46)368,24
C4.2(C2×C46) = SD16×C23φ: C2×C46/C46C2 ⊆ Aut C41842C4.2(C2xC46)368,25
C4.3(C2×C46) = Q16×C23φ: C2×C46/C46C2 ⊆ Aut C43682C4.3(C2xC46)368,26
C4.4(C2×C46) = Q8×C46φ: C2×C46/C46C2 ⊆ Aut C4368C4.4(C2xC46)368,39
C4.5(C2×C46) = C4○D4×C23φ: C2×C46/C46C2 ⊆ Aut C41842C4.5(C2xC46)368,40
C4.6(C2×C46) = M4(2)×C23central extension (φ=1)1842C4.6(C2xC46)368,23

׿
×
𝔽