Copied to
clipboard

G = C2xC46order 92 = 22·23

Abelian group of type [2,46]

direct product, abelian, monomial, 2-elementary

Aliases: C2xC46, SmallGroup(92,4)

Series: Derived Chief Lower central Upper central

C1 — C2xC46
C1C23C46 — C2xC46
C1 — C2xC46
C1 — C2xC46

Generators and relations for C2xC46
 G = < a,b | a2=b46=1, ab=ba >

Subgroups: 10, all normal (4 characteristic)
Quotients: C1, C2, C22, C23, C46, C2xC46

Smallest permutation representation of C2xC46
Regular action on 92 points
Generators in S92
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 91)(10 92)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 61)(26 62)(27 63)(28 64)(29 65)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(43 79)(44 80)(45 81)(46 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)

G:=sub<Sym(92)| (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)>;

G:=Group( (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92) );

G=PermutationGroup([[(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,91),(10,92),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,61),(26,62),(27,63),(28,64),(29,65),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(43,79),(44,80),(45,81),(46,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)]])

C2xC46 is a maximal subgroup of   C23:D4

92 conjugacy classes

class 1 2A2B2C23A···23V46A···46BN
order122223···2346···46
size11111···11···1

92 irreducible representations

dim1111
type++
imageC1C2C23C46
kernelC2xC46C46C22C2
# reps132266

Matrix representation of C2xC46 in GL2(F47) generated by

460
01
,
170
05
G:=sub<GL(2,GF(47))| [46,0,0,1],[17,0,0,5] >;

C2xC46 in GAP, Magma, Sage, TeX

C_2\times C_{46}
% in TeX

G:=Group("C2xC46");
// GroupNames label

G:=SmallGroup(92,4);
// by ID

G=gap.SmallGroup(92,4);
# by ID

G:=PCGroup([3,-2,-2,-23]);
// Polycyclic

G:=Group<a,b|a^2=b^46=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2xC46 in TeX

׿
x
:
Z
F
o
wr
Q
<