Extensions 1→N→G→Q→1 with N=C2×C46 and Q=C4

Direct product G=N×Q with N=C2×C46 and Q=C4
dρLabelID
C22×C92368C2^2xC92368,37

Semidirect products G=N:Q with N=C2×C46 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C46)⋊1C4 = C22⋊C4×C23φ: C4/C2C2 ⊆ Aut C2×C46184(C2xC46):1C4368,20
(C2×C46)⋊2C4 = C23.D23φ: C4/C2C2 ⊆ Aut C2×C46184(C2xC46):2C4368,18
(C2×C46)⋊3C4 = C22×Dic23φ: C4/C2C2 ⊆ Aut C2×C46368(C2xC46):3C4368,35

Non-split extensions G=N.Q with N=C2×C46 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C46).1C4 = M4(2)×C23φ: C4/C2C2 ⊆ Aut C2×C461842(C2xC46).1C4368,23
(C2×C46).2C4 = C2×C23⋊C8φ: C4/C2C2 ⊆ Aut C2×C46368(C2xC46).2C4368,8
(C2×C46).3C4 = C92.C4φ: C4/C2C2 ⊆ Aut C2×C461842(C2xC46).3C4368,9

׿
×
𝔽