Extensions 1→N→G→Q→1 with N=C30 and Q=C12

Direct product G=N×Q with N=C30 and Q=C12
dρLabelID
C6×C60360C6xC60360,115

Semidirect products G=N:Q with N=C30 and Q=C12
extensionφ:Q→Aut NdρLabelID
C301C12 = C6×C3⋊F5φ: C12/C3C4 ⊆ Aut C30604C30:1C12360,146
C302C12 = C3×C6×F5φ: C12/C3C4 ⊆ Aut C3090C30:2C12360,145
C303C12 = C6×Dic15φ: C12/C6C2 ⊆ Aut C30120C30:3C12360,103
C304C12 = C3×C6×Dic5φ: C12/C6C2 ⊆ Aut C30360C30:4C12360,93
C305C12 = Dic3×C30φ: C12/C6C2 ⊆ Aut C30120C30:5C12360,98

Non-split extensions G=N.Q with N=C30 and Q=C12
extensionφ:Q→Aut NdρLabelID
C30.1C12 = C3×C15⋊C8φ: C12/C3C4 ⊆ Aut C301204C30.1C12360,53
C30.2C12 = C9×C5⋊C8φ: C12/C3C4 ⊆ Aut C303604C30.2C12360,5
C30.3C12 = C18×F5φ: C12/C3C4 ⊆ Aut C30904C30.3C12360,43
C30.4C12 = C32×C5⋊C8φ: C12/C3C4 ⊆ Aut C30360C30.4C12360,52
C30.5C12 = C3×C153C8φ: C12/C6C2 ⊆ Aut C301202C30.5C12360,35
C30.6C12 = C9×C52C8φ: C12/C6C2 ⊆ Aut C303602C30.6C12360,2
C30.7C12 = C18×Dic5φ: C12/C6C2 ⊆ Aut C30360C30.7C12360,18
C30.8C12 = C32×C52C8φ: C12/C6C2 ⊆ Aut C30360C30.8C12360,33
C30.9C12 = C15×C3⋊C8φ: C12/C6C2 ⊆ Aut C301202C30.9C12360,34

׿
×
𝔽