Copied to
clipboard

G = C6xC3:F5order 360 = 23·32·5

Direct product of C6 and C3:F5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C6xC3:F5, C30:1C12, C30:2Dic3, C6:(C3xF5), C5:(C6xDic3), (C3xC6):2F5, C3:2(C6xF5), (C3xC30):3C4, D5:(C3xDic3), D10.(C3xS3), C10:(C3xDic3), C15:2(C2xC12), C32:7(C2xF5), (C3xD5):2C12, (C3xD5).9D6, D5.2(S3xC6), (C6xD5).8S3, (C6xD5).4C6, (C3xD5):3Dic3, C15:3(C2xDic3), (C32xD5):6C4, (C32xD5).6C22, (C3xC15):9(C2xC4), (D5xC3xC6).4C2, (C3xD5).2(C2xC6), SmallGroup(360,146)

Series: Derived Chief Lower central Upper central

C1C15 — C6xC3:F5
C1C5C15C3xD5C32xD5C3xC3:F5 — C6xC3:F5
C15 — C6xC3:F5
C1C6

Generators and relations for C6xC3:F5
 G = < a,b,c,d | a6=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 276 in 74 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, C6, C6, C2xC4, C32, D5, C10, Dic3, C12, C2xC6, C15, C15, C3xC6, C3xC6, F5, D10, C2xDic3, C2xC12, C3xD5, C3xD5, C30, C30, C3xDic3, C62, C2xF5, C3xC15, C3xF5, C3:F5, C6xD5, C6xD5, C6xDic3, C32xD5, C3xC30, C6xF5, C2xC3:F5, C3xC3:F5, D5xC3xC6, C6xC3:F5
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, Dic3, C12, D6, C2xC6, C3xS3, F5, C2xDic3, C2xC12, C3xDic3, S3xC6, C2xF5, C3xF5, C3:F5, C6xDic3, C6xF5, C2xC3:F5, C3xC3:F5, C6xC3:F5

Smallest permutation representation of C6xC3:F5
On 60 points
Generators in S60
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)(49 51 53)(50 52 54)(55 59 57)(56 60 58)
(1 48 35 51 42)(2 43 36 52 37)(3 44 31 53 38)(4 45 32 54 39)(5 46 33 49 40)(6 47 34 50 41)(7 58 26 19 14)(8 59 27 20 15)(9 60 28 21 16)(10 55 29 22 17)(11 56 30 23 18)(12 57 25 24 13)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(7 36 22 49)(8 31 23 50)(9 32 24 51)(10 33 19 52)(11 34 20 53)(12 35 21 54)(25 48 60 39)(26 43 55 40)(27 44 56 41)(28 45 57 42)(29 46 58 37)(30 47 59 38)

G:=sub<Sym(60)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,59,57)(56,60,58), (1,48,35,51,42)(2,43,36,52,37)(3,44,31,53,38)(4,45,32,54,39)(5,46,33,49,40)(6,47,34,50,41)(7,58,26,19,14)(8,59,27,20,15)(9,60,28,21,16)(10,55,29,22,17)(11,56,30,23,18)(12,57,25,24,13), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,36,22,49)(8,31,23,50)(9,32,24,51)(10,33,19,52)(11,34,20,53)(12,35,21,54)(25,48,60,39)(26,43,55,40)(27,44,56,41)(28,45,57,42)(29,46,58,37)(30,47,59,38)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,59,57)(56,60,58), (1,48,35,51,42)(2,43,36,52,37)(3,44,31,53,38)(4,45,32,54,39)(5,46,33,49,40)(6,47,34,50,41)(7,58,26,19,14)(8,59,27,20,15)(9,60,28,21,16)(10,55,29,22,17)(11,56,30,23,18)(12,57,25,24,13), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,36,22,49)(8,31,23,50)(9,32,24,51)(10,33,19,52)(11,34,20,53)(12,35,21,54)(25,48,60,39)(26,43,55,40)(27,44,56,41)(28,45,57,42)(29,46,58,37)(30,47,59,38) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48),(49,51,53),(50,52,54),(55,59,57),(56,60,58)], [(1,48,35,51,42),(2,43,36,52,37),(3,44,31,53,38),(4,45,32,54,39),(5,46,33,49,40),(6,47,34,50,41),(7,58,26,19,14),(8,59,27,20,15),(9,60,28,21,16),(10,55,29,22,17),(11,56,30,23,18),(12,57,25,24,13)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(7,36,22,49),(8,31,23,50),(9,32,24,51),(10,33,19,52),(11,34,20,53),(12,35,21,54),(25,48,60,39),(26,43,55,40),(27,44,56,41),(28,45,57,42),(29,46,58,37),(30,47,59,38)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D 5 6A6B6C6D6E6F6G6H6I6J···6O 10 12A···12H15A···15H30A···30H
order122233333444456666666666···61012···1215···1530···30
size11551122215151515411222555510···10415···154···44···4

54 irreducible representations

dim11111111112222222244444444
type++++-+-++
imageC1C2C2C3C4C4C6C6C12C12S3Dic3D6Dic3C3xS3C3xDic3S3xC6C3xDic3F5C2xF5C3xF5C3:F5C6xF5C2xC3:F5C3xC3:F5C6xC3:F5
kernelC6xC3:F5C3xC3:F5D5xC3xC6C2xC3:F5C32xD5C3xC30C3:F5C6xD5C3xD5C30C6xD5C3xD5C3xD5C30D10D5D5C10C3xC6C32C6C6C3C3C2C1
# reps12122242441111222211222244

Matrix representation of C6xC3:F5 in GL4(F61) generated by

48000
04800
00480
00048
,
47000
04700
00130
00013
,
0100
601700
004444
001760
,
0010
001760
60000
06000
G:=sub<GL(4,GF(61))| [48,0,0,0,0,48,0,0,0,0,48,0,0,0,0,48],[47,0,0,0,0,47,0,0,0,0,13,0,0,0,0,13],[0,60,0,0,1,17,0,0,0,0,44,17,0,0,44,60],[0,0,60,0,0,0,0,60,1,17,0,0,0,60,0,0] >;

C6xC3:F5 in GAP, Magma, Sage, TeX

C_6\times C_3\rtimes F_5
% in TeX

G:=Group("C6xC3:F5");
// GroupNames label

G:=SmallGroup(360,146);
// by ID

G=gap.SmallGroup(360,146);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,72,1444,7781,887]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<