Extensions 1→N→G→Q→1 with N=C2xDic23 and Q=C2

Direct product G=NxQ with N=C2xDic23 and Q=C2
dρLabelID
C22xDic23368C2^2xDic23368,35

Semidirect products G=N:Q with N=C2xDic23 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic23):1C2 = D46:C4φ: C2/C1C2 ⊆ Out C2xDic23184(C2xDic23):1C2368,13
(C2xDic23):2C2 = C23.D23φ: C2/C1C2 ⊆ Out C2xDic23184(C2xDic23):2C2368,18
(C2xDic23):3C2 = D4:2D23φ: C2/C1C2 ⊆ Out C2xDic231844-(C2xDic23):3C2368,32
(C2xDic23):4C2 = C2xC23:D4φ: C2/C1C2 ⊆ Out C2xDic23184(C2xDic23):4C2368,36
(C2xDic23):5C2 = C2xC4xD23φ: trivial image184(C2xDic23):5C2368,28

Non-split extensions G=N.Q with N=C2xDic23 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic23).1C2 = Dic23:C4φ: C2/C1C2 ⊆ Out C2xDic23368(C2xDic23).1C2368,11
(C2xDic23).2C2 = C92:C4φ: C2/C1C2 ⊆ Out C2xDic23368(C2xDic23).2C2368,12
(C2xDic23).3C2 = C2xDic46φ: C2/C1C2 ⊆ Out C2xDic23368(C2xDic23).3C2368,27
(C2xDic23).4C2 = C4xDic23φ: trivial image368(C2xDic23).4C2368,10

׿
x
:
Z
F
o
wr
Q
<