Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=D5

Direct product G=N×Q with N=C3×Dic3 and Q=D5
dρLabelID
C3×D5×Dic3604C3xD5xDic3360,58

Semidirect products G=N:Q with N=C3×Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1D5 = C3⋊D60φ: D5/C5C2 ⊆ Out C3×Dic3604+(C3xDic3):1D5360,81
(C3×Dic3)⋊2D5 = Dic3×D15φ: D5/C5C2 ⊆ Out C3×Dic31204-(C3xDic3):2D5360,77
(C3×Dic3)⋊3D5 = C6.D30φ: D5/C5C2 ⊆ Out C3×Dic3604+(C3xDic3):3D5360,79
(C3×Dic3)⋊4D5 = C3×C3⋊D20φ: D5/C5C2 ⊆ Out C3×Dic3604(C3xDic3):4D5360,62
(C3×Dic3)⋊5D5 = C3×D30.C2φ: trivial image1204(C3xDic3):5D5360,60

Non-split extensions G=N.Q with N=C3×Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1D5 = C3⋊Dic30φ: D5/C5C2 ⊆ Out C3×Dic31204-(C3xDic3).1D5360,83
(C3×Dic3).2D5 = C3×C15⋊Q8φ: D5/C5C2 ⊆ Out C3×Dic31204(C3xDic3).2D5360,64

׿
×
𝔽