metabelian, supersoluble, monomial
Aliases: C6.7D30, C15⋊2Dic6, C3⋊1Dic30, C30.27D6, Dic3.D15, C32⋊2Dic10, Dic15.1S3, C10.7S32, (C3×C15)⋊5Q8, C3⋊1(C15⋊Q8), C6.7(S3×D5), (C3×C6).7D10, C2.7(S3×D15), C5⋊1(C32⋊2Q8), C3⋊Dic15.4C2, (C5×Dic3).1S3, (C3×Dic3).1D5, (C3×C30).21C22, (C3×Dic15).3C2, (Dic3×C15).1C2, SmallGroup(360,83)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊Dic30
G = < a,b,c | a3=b60=1, c2=b30, bab-1=a-1, ac=ca, cbc-1=b-1 >
Subgroups: 316 in 54 conjugacy classes, 24 normal (all characteristic)
C1, C2, C3, C3, C4, C5, C6, C6, Q8, C32, C10, Dic3, Dic3, C12, C15, C15, C3×C6, Dic5, C20, Dic6, C30, C30, C3×Dic3, C3×Dic3, C3⋊Dic3, Dic10, C3×C15, C5×Dic3, C3×Dic5, Dic15, Dic15, C60, C32⋊2Q8, C3×C30, C15⋊Q8, Dic30, Dic3×C15, C3×Dic15, C3⋊Dic15, C3⋊Dic30
Quotients: C1, C2, C22, S3, Q8, D5, D6, D10, Dic6, D15, S32, Dic10, S3×D5, D30, C32⋊2Q8, C15⋊Q8, Dic30, S3×D15, C3⋊Dic30
(1 21 41)(2 42 22)(3 23 43)(4 44 24)(5 25 45)(6 46 26)(7 27 47)(8 48 28)(9 29 49)(10 50 30)(11 31 51)(12 52 32)(13 33 53)(14 54 34)(15 35 55)(16 56 36)(17 37 57)(18 58 38)(19 39 59)(20 60 40)(61 101 81)(62 82 102)(63 103 83)(64 84 104)(65 105 85)(66 86 106)(67 107 87)(68 88 108)(69 109 89)(70 90 110)(71 111 91)(72 92 112)(73 113 93)(74 94 114)(75 115 95)(76 96 116)(77 117 97)(78 98 118)(79 119 99)(80 100 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 91 31 61)(2 90 32 120)(3 89 33 119)(4 88 34 118)(5 87 35 117)(6 86 36 116)(7 85 37 115)(8 84 38 114)(9 83 39 113)(10 82 40 112)(11 81 41 111)(12 80 42 110)(13 79 43 109)(14 78 44 108)(15 77 45 107)(16 76 46 106)(17 75 47 105)(18 74 48 104)(19 73 49 103)(20 72 50 102)(21 71 51 101)(22 70 52 100)(23 69 53 99)(24 68 54 98)(25 67 55 97)(26 66 56 96)(27 65 57 95)(28 64 58 94)(29 63 59 93)(30 62 60 92)
G:=sub<Sym(120)| (1,21,41)(2,42,22)(3,23,43)(4,44,24)(5,25,45)(6,46,26)(7,27,47)(8,48,28)(9,29,49)(10,50,30)(11,31,51)(12,52,32)(13,33,53)(14,54,34)(15,35,55)(16,56,36)(17,37,57)(18,58,38)(19,39,59)(20,60,40)(61,101,81)(62,82,102)(63,103,83)(64,84,104)(65,105,85)(66,86,106)(67,107,87)(68,88,108)(69,109,89)(70,90,110)(71,111,91)(72,92,112)(73,113,93)(74,94,114)(75,115,95)(76,96,116)(77,117,97)(78,98,118)(79,119,99)(80,100,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,91,31,61)(2,90,32,120)(3,89,33,119)(4,88,34,118)(5,87,35,117)(6,86,36,116)(7,85,37,115)(8,84,38,114)(9,83,39,113)(10,82,40,112)(11,81,41,111)(12,80,42,110)(13,79,43,109)(14,78,44,108)(15,77,45,107)(16,76,46,106)(17,75,47,105)(18,74,48,104)(19,73,49,103)(20,72,50,102)(21,71,51,101)(22,70,52,100)(23,69,53,99)(24,68,54,98)(25,67,55,97)(26,66,56,96)(27,65,57,95)(28,64,58,94)(29,63,59,93)(30,62,60,92)>;
G:=Group( (1,21,41)(2,42,22)(3,23,43)(4,44,24)(5,25,45)(6,46,26)(7,27,47)(8,48,28)(9,29,49)(10,50,30)(11,31,51)(12,52,32)(13,33,53)(14,54,34)(15,35,55)(16,56,36)(17,37,57)(18,58,38)(19,39,59)(20,60,40)(61,101,81)(62,82,102)(63,103,83)(64,84,104)(65,105,85)(66,86,106)(67,107,87)(68,88,108)(69,109,89)(70,90,110)(71,111,91)(72,92,112)(73,113,93)(74,94,114)(75,115,95)(76,96,116)(77,117,97)(78,98,118)(79,119,99)(80,100,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,91,31,61)(2,90,32,120)(3,89,33,119)(4,88,34,118)(5,87,35,117)(6,86,36,116)(7,85,37,115)(8,84,38,114)(9,83,39,113)(10,82,40,112)(11,81,41,111)(12,80,42,110)(13,79,43,109)(14,78,44,108)(15,77,45,107)(16,76,46,106)(17,75,47,105)(18,74,48,104)(19,73,49,103)(20,72,50,102)(21,71,51,101)(22,70,52,100)(23,69,53,99)(24,68,54,98)(25,67,55,97)(26,66,56,96)(27,65,57,95)(28,64,58,94)(29,63,59,93)(30,62,60,92) );
G=PermutationGroup([[(1,21,41),(2,42,22),(3,23,43),(4,44,24),(5,25,45),(6,46,26),(7,27,47),(8,48,28),(9,29,49),(10,50,30),(11,31,51),(12,52,32),(13,33,53),(14,54,34),(15,35,55),(16,56,36),(17,37,57),(18,58,38),(19,39,59),(20,60,40),(61,101,81),(62,82,102),(63,103,83),(64,84,104),(65,105,85),(66,86,106),(67,107,87),(68,88,108),(69,109,89),(70,90,110),(71,111,91),(72,92,112),(73,113,93),(74,94,114),(75,115,95),(76,96,116),(77,117,97),(78,98,118),(79,119,99),(80,100,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,91,31,61),(2,90,32,120),(3,89,33,119),(4,88,34,118),(5,87,35,117),(6,86,36,116),(7,85,37,115),(8,84,38,114),(9,83,39,113),(10,82,40,112),(11,81,41,111),(12,80,42,110),(13,79,43,109),(14,78,44,108),(15,77,45,107),(16,76,46,106),(17,75,47,105),(18,74,48,104),(19,73,49,103),(20,72,50,102),(21,71,51,101),(22,70,52,100),(23,69,53,99),(24,68,54,98),(25,67,55,97),(26,66,56,96),(27,65,57,95),(28,64,58,94),(29,63,59,93),(30,62,60,92)]])
51 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 15E | ··· | 15J | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 30E | ··· | 30J | 60A | ··· | 60H |
order | 1 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 15 | ··· | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 2 | 4 | 6 | 30 | 90 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 6 | 6 | 30 | 30 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | + | + | + | - | + | - | + | - | + | + | - | - | + | - |
image | C1 | C2 | C2 | C2 | S3 | S3 | Q8 | D5 | D6 | D10 | Dic6 | D15 | Dic10 | D30 | Dic30 | S32 | S3×D5 | C32⋊2Q8 | C15⋊Q8 | S3×D15 | C3⋊Dic30 |
kernel | C3⋊Dic30 | Dic3×C15 | C3×Dic15 | C3⋊Dic15 | C5×Dic3 | Dic15 | C3×C15 | C3×Dic3 | C30 | C3×C6 | C15 | Dic3 | C32 | C6 | C3 | C10 | C6 | C5 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 1 | 2 | 1 | 2 | 4 | 4 |
Matrix representation of C3⋊Dic30 ►in GL4(𝔽61) generated by
0 | 60 | 0 | 0 |
1 | 60 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 36 | 8 |
0 | 0 | 53 | 44 |
60 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 40 | 23 |
0 | 0 | 2 | 21 |
G:=sub<GL(4,GF(61))| [0,1,0,0,60,60,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,36,53,0,0,8,44],[60,0,0,0,0,60,0,0,0,0,40,2,0,0,23,21] >;
C3⋊Dic30 in GAP, Magma, Sage, TeX
C_3\rtimes {\rm Dic}_{30}
% in TeX
G:=Group("C3:Dic30");
// GroupNames label
G:=SmallGroup(360,83);
// by ID
G=gap.SmallGroup(360,83);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-5,24,73,31,201,1444,10373]);
// Polycyclic
G:=Group<a,b,c|a^3=b^60=1,c^2=b^30,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations