Copied to
clipboard

G = C3⋊Dic30order 360 = 23·32·5

The semidirect product of C3 and Dic30 acting via Dic30/Dic15=C2

metabelian, supersoluble, monomial

Aliases: C6.7D30, C152Dic6, C31Dic30, C30.27D6, Dic3.D15, C322Dic10, Dic15.1S3, C10.7S32, (C3×C15)⋊5Q8, C31(C15⋊Q8), C6.7(S3×D5), (C3×C6).7D10, C2.7(S3×D15), C51(C322Q8), C3⋊Dic15.4C2, (C5×Dic3).1S3, (C3×Dic3).1D5, (C3×C30).21C22, (C3×Dic15).3C2, (Dic3×C15).1C2, SmallGroup(360,83)

Series: Derived Chief Lower central Upper central

C1C3×C30 — C3⋊Dic30
C1C5C15C3×C15C3×C30C3×Dic15 — C3⋊Dic30
C3×C15C3×C30 — C3⋊Dic30
C1C2

Generators and relations for C3⋊Dic30
 G = < a,b,c | a3=b60=1, c2=b30, bab-1=a-1, ac=ca, cbc-1=b-1 >

Subgroups: 316 in 54 conjugacy classes, 24 normal (all characteristic)
C1, C2, C3, C3, C4, C5, C6, C6, Q8, C32, C10, Dic3, Dic3, C12, C15, C15, C3×C6, Dic5, C20, Dic6, C30, C30, C3×Dic3, C3×Dic3, C3⋊Dic3, Dic10, C3×C15, C5×Dic3, C3×Dic5, Dic15, Dic15, C60, C322Q8, C3×C30, C15⋊Q8, Dic30, Dic3×C15, C3×Dic15, C3⋊Dic15, C3⋊Dic30
Quotients: C1, C2, C22, S3, Q8, D5, D6, D10, Dic6, D15, S32, Dic10, S3×D5, D30, C322Q8, C15⋊Q8, Dic30, S3×D15, C3⋊Dic30

Smallest permutation representation of C3⋊Dic30
On 120 points
Generators in S120
(1 21 41)(2 42 22)(3 23 43)(4 44 24)(5 25 45)(6 46 26)(7 27 47)(8 48 28)(9 29 49)(10 50 30)(11 31 51)(12 52 32)(13 33 53)(14 54 34)(15 35 55)(16 56 36)(17 37 57)(18 58 38)(19 39 59)(20 60 40)(61 101 81)(62 82 102)(63 103 83)(64 84 104)(65 105 85)(66 86 106)(67 107 87)(68 88 108)(69 109 89)(70 90 110)(71 111 91)(72 92 112)(73 113 93)(74 94 114)(75 115 95)(76 96 116)(77 117 97)(78 98 118)(79 119 99)(80 100 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 91 31 61)(2 90 32 120)(3 89 33 119)(4 88 34 118)(5 87 35 117)(6 86 36 116)(7 85 37 115)(8 84 38 114)(9 83 39 113)(10 82 40 112)(11 81 41 111)(12 80 42 110)(13 79 43 109)(14 78 44 108)(15 77 45 107)(16 76 46 106)(17 75 47 105)(18 74 48 104)(19 73 49 103)(20 72 50 102)(21 71 51 101)(22 70 52 100)(23 69 53 99)(24 68 54 98)(25 67 55 97)(26 66 56 96)(27 65 57 95)(28 64 58 94)(29 63 59 93)(30 62 60 92)

G:=sub<Sym(120)| (1,21,41)(2,42,22)(3,23,43)(4,44,24)(5,25,45)(6,46,26)(7,27,47)(8,48,28)(9,29,49)(10,50,30)(11,31,51)(12,52,32)(13,33,53)(14,54,34)(15,35,55)(16,56,36)(17,37,57)(18,58,38)(19,39,59)(20,60,40)(61,101,81)(62,82,102)(63,103,83)(64,84,104)(65,105,85)(66,86,106)(67,107,87)(68,88,108)(69,109,89)(70,90,110)(71,111,91)(72,92,112)(73,113,93)(74,94,114)(75,115,95)(76,96,116)(77,117,97)(78,98,118)(79,119,99)(80,100,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,91,31,61)(2,90,32,120)(3,89,33,119)(4,88,34,118)(5,87,35,117)(6,86,36,116)(7,85,37,115)(8,84,38,114)(9,83,39,113)(10,82,40,112)(11,81,41,111)(12,80,42,110)(13,79,43,109)(14,78,44,108)(15,77,45,107)(16,76,46,106)(17,75,47,105)(18,74,48,104)(19,73,49,103)(20,72,50,102)(21,71,51,101)(22,70,52,100)(23,69,53,99)(24,68,54,98)(25,67,55,97)(26,66,56,96)(27,65,57,95)(28,64,58,94)(29,63,59,93)(30,62,60,92)>;

G:=Group( (1,21,41)(2,42,22)(3,23,43)(4,44,24)(5,25,45)(6,46,26)(7,27,47)(8,48,28)(9,29,49)(10,50,30)(11,31,51)(12,52,32)(13,33,53)(14,54,34)(15,35,55)(16,56,36)(17,37,57)(18,58,38)(19,39,59)(20,60,40)(61,101,81)(62,82,102)(63,103,83)(64,84,104)(65,105,85)(66,86,106)(67,107,87)(68,88,108)(69,109,89)(70,90,110)(71,111,91)(72,92,112)(73,113,93)(74,94,114)(75,115,95)(76,96,116)(77,117,97)(78,98,118)(79,119,99)(80,100,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,91,31,61)(2,90,32,120)(3,89,33,119)(4,88,34,118)(5,87,35,117)(6,86,36,116)(7,85,37,115)(8,84,38,114)(9,83,39,113)(10,82,40,112)(11,81,41,111)(12,80,42,110)(13,79,43,109)(14,78,44,108)(15,77,45,107)(16,76,46,106)(17,75,47,105)(18,74,48,104)(19,73,49,103)(20,72,50,102)(21,71,51,101)(22,70,52,100)(23,69,53,99)(24,68,54,98)(25,67,55,97)(26,66,56,96)(27,65,57,95)(28,64,58,94)(29,63,59,93)(30,62,60,92) );

G=PermutationGroup([[(1,21,41),(2,42,22),(3,23,43),(4,44,24),(5,25,45),(6,46,26),(7,27,47),(8,48,28),(9,29,49),(10,50,30),(11,31,51),(12,52,32),(13,33,53),(14,54,34),(15,35,55),(16,56,36),(17,37,57),(18,58,38),(19,39,59),(20,60,40),(61,101,81),(62,82,102),(63,103,83),(64,84,104),(65,105,85),(66,86,106),(67,107,87),(68,88,108),(69,109,89),(70,90,110),(71,111,91),(72,92,112),(73,113,93),(74,94,114),(75,115,95),(76,96,116),(77,117,97),(78,98,118),(79,119,99),(80,100,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,91,31,61),(2,90,32,120),(3,89,33,119),(4,88,34,118),(5,87,35,117),(6,86,36,116),(7,85,37,115),(8,84,38,114),(9,83,39,113),(10,82,40,112),(11,81,41,111),(12,80,42,110),(13,79,43,109),(14,78,44,108),(15,77,45,107),(16,76,46,106),(17,75,47,105),(18,74,48,104),(19,73,49,103),(20,72,50,102),(21,71,51,101),(22,70,52,100),(23,69,53,99),(24,68,54,98),(25,67,55,97),(26,66,56,96),(27,65,57,95),(28,64,58,94),(29,63,59,93),(30,62,60,92)]])

51 conjugacy classes

class 1  2 3A3B3C4A4B4C5A5B6A6B6C10A10B12A12B12C12D15A15B15C15D15E···15J20A20B20C20D30A30B30C30D30E···30J60A···60H
order12333444556661010121212121515151515···15202020203030303030···3060···60
size1122463090222242266303022224···4666622224···46···6

51 irreducible representations

dim111122222222222444444
type++++++-+++-+-+-++--+-
imageC1C2C2C2S3S3Q8D5D6D10Dic6D15Dic10D30Dic30S32S3×D5C322Q8C15⋊Q8S3×D15C3⋊Dic30
kernelC3⋊Dic30Dic3×C15C3×Dic15C3⋊Dic15C5×Dic3Dic15C3×C15C3×Dic3C30C3×C6C15Dic3C32C6C3C10C6C5C3C2C1
# reps111111122244448121244

Matrix representation of C3⋊Dic30 in GL4(𝔽61) generated by

06000
16000
0010
0001
,
0100
1000
00368
005344
,
60000
06000
004023
00221
G:=sub<GL(4,GF(61))| [0,1,0,0,60,60,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,36,53,0,0,8,44],[60,0,0,0,0,60,0,0,0,0,40,2,0,0,23,21] >;

C3⋊Dic30 in GAP, Magma, Sage, TeX

C_3\rtimes {\rm Dic}_{30}
% in TeX

G:=Group("C3:Dic30");
// GroupNames label

G:=SmallGroup(360,83);
// by ID

G=gap.SmallGroup(360,83);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,24,73,31,201,1444,10373]);
// Polycyclic

G:=Group<a,b,c|a^3=b^60=1,c^2=b^30,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽