Extensions 1→N→G→Q→1 with N=C3×C6 and Q=F5

Direct product G=N×Q with N=C3×C6 and Q=F5
dρLabelID
C3×C6×F590C3xC6xF5360,145

Semidirect products G=N:Q with N=C3×C6 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊F5 = C2×C32⋊F5φ: F5/C5C4 ⊆ Aut C3×C6604+(C3xC6):F5360,150
(C3×C6)⋊2F5 = C6×C3⋊F5φ: F5/D5C2 ⊆ Aut C3×C6604(C3xC6):2F5360,146
(C3×C6)⋊3F5 = C2×C323F5φ: F5/D5C2 ⊆ Aut C3×C690(C3xC6):3F5360,147

Non-split extensions G=N.Q with N=C3×C6 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C3×C6).F5 = (C3×C6).F5φ: F5/C5C4 ⊆ Aut C3×C61204-(C3xC6).F5360,57
(C3×C6).2F5 = C3×C15⋊C8φ: F5/D5C2 ⊆ Aut C3×C61204(C3xC6).2F5360,53
(C3×C6).3F5 = C30.Dic3φ: F5/D5C2 ⊆ Aut C3×C6360(C3xC6).3F5360,54
(C3×C6).4F5 = C32×C5⋊C8central extension (φ=1)360(C3xC6).4F5360,52

׿
×
𝔽