Extensions 1→N→G→Q→1 with N=C2×C92 and Q=C2

Direct product G=N×Q with N=C2×C92 and Q=C2
dρLabelID
C22×C92368C2^2xC92368,37

Semidirect products G=N:Q with N=C2×C92 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C92)⋊1C2 = D46⋊C4φ: C2/C1C2 ⊆ Aut C2×C92184(C2xC92):1C2368,13
(C2×C92)⋊2C2 = C22⋊C4×C23φ: C2/C1C2 ⊆ Aut C2×C92184(C2xC92):2C2368,20
(C2×C92)⋊3C2 = C2×D92φ: C2/C1C2 ⊆ Aut C2×C92184(C2xC92):3C2368,29
(C2×C92)⋊4C2 = D925C2φ: C2/C1C2 ⊆ Aut C2×C921842(C2xC92):4C2368,30
(C2×C92)⋊5C2 = C2×C4×D23φ: C2/C1C2 ⊆ Aut C2×C92184(C2xC92):5C2368,28
(C2×C92)⋊6C2 = D4×C46φ: C2/C1C2 ⊆ Aut C2×C92184(C2xC92):6C2368,38
(C2×C92)⋊7C2 = C4○D4×C23φ: C2/C1C2 ⊆ Aut C2×C921842(C2xC92):7C2368,40

Non-split extensions G=N.Q with N=C2×C92 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C92).1C2 = Dic23⋊C4φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).1C2368,11
(C2×C92).2C2 = C4⋊C4×C23φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).2C2368,21
(C2×C92).3C2 = C92⋊C4φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).3C2368,12
(C2×C92).4C2 = C2×Dic46φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).4C2368,27
(C2×C92).5C2 = C92.C4φ: C2/C1C2 ⊆ Aut C2×C921842(C2xC92).5C2368,9
(C2×C92).6C2 = C2×C23⋊C8φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).6C2368,8
(C2×C92).7C2 = C4×Dic23φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).7C2368,10
(C2×C92).8C2 = M4(2)×C23φ: C2/C1C2 ⊆ Aut C2×C921842(C2xC92).8C2368,23
(C2×C92).9C2 = Q8×C46φ: C2/C1C2 ⊆ Aut C2×C92368(C2xC92).9C2368,39

׿
×
𝔽