metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C127⋊C3, SmallGroup(381,1)
Series: Derived ►Chief ►Lower central ►Upper central
| C127 — C127⋊C3 | 
Generators and relations for C127⋊C3
 G = < a,b | a127=b3=1, bab-1=a19 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127)
(2 108 20)(3 88 39)(4 68 58)(5 48 77)(6 28 96)(7 8 115)(9 95 26)(10 75 45)(11 55 64)(12 35 83)(13 15 102)(14 122 121)(16 82 32)(17 62 51)(18 42 70)(19 22 89)(21 109 127)(23 69 38)(24 49 57)(25 29 76)(27 116 114)(30 56 44)(31 36 63)(33 123 101)(34 103 120)(37 43 50)(40 110 107)(41 90 126)(46 117 94)(47 97 113)(52 124 81)(53 104 100)(54 84 119)(59 111 87)(60 91 106)(61 71 125)(65 118 74)(66 98 93)(67 78 112)(72 105 80)(73 85 99)(79 92 86)
G:=sub<Sym(127)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (2,108,20)(3,88,39)(4,68,58)(5,48,77)(6,28,96)(7,8,115)(9,95,26)(10,75,45)(11,55,64)(12,35,83)(13,15,102)(14,122,121)(16,82,32)(17,62,51)(18,42,70)(19,22,89)(21,109,127)(23,69,38)(24,49,57)(25,29,76)(27,116,114)(30,56,44)(31,36,63)(33,123,101)(34,103,120)(37,43,50)(40,110,107)(41,90,126)(46,117,94)(47,97,113)(52,124,81)(53,104,100)(54,84,119)(59,111,87)(60,91,106)(61,71,125)(65,118,74)(66,98,93)(67,78,112)(72,105,80)(73,85,99)(79,92,86)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (2,108,20)(3,88,39)(4,68,58)(5,48,77)(6,28,96)(7,8,115)(9,95,26)(10,75,45)(11,55,64)(12,35,83)(13,15,102)(14,122,121)(16,82,32)(17,62,51)(18,42,70)(19,22,89)(21,109,127)(23,69,38)(24,49,57)(25,29,76)(27,116,114)(30,56,44)(31,36,63)(33,123,101)(34,103,120)(37,43,50)(40,110,107)(41,90,126)(46,117,94)(47,97,113)(52,124,81)(53,104,100)(54,84,119)(59,111,87)(60,91,106)(61,71,125)(65,118,74)(66,98,93)(67,78,112)(72,105,80)(73,85,99)(79,92,86) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127)], [(2,108,20),(3,88,39),(4,68,58),(5,48,77),(6,28,96),(7,8,115),(9,95,26),(10,75,45),(11,55,64),(12,35,83),(13,15,102),(14,122,121),(16,82,32),(17,62,51),(18,42,70),(19,22,89),(21,109,127),(23,69,38),(24,49,57),(25,29,76),(27,116,114),(30,56,44),(31,36,63),(33,123,101),(34,103,120),(37,43,50),(40,110,107),(41,90,126),(46,117,94),(47,97,113),(52,124,81),(53,104,100),(54,84,119),(59,111,87),(60,91,106),(61,71,125),(65,118,74),(66,98,93),(67,78,112),(72,105,80),(73,85,99),(79,92,86)]])
45 conjugacy classes
| class | 1 | 3A | 3B | 127A | ··· | 127AP | 
| order | 1 | 3 | 3 | 127 | ··· | 127 | 
| size | 1 | 127 | 127 | 3 | ··· | 3 | 
45 irreducible representations
| dim | 1 | 1 | 3 | 
| type | + | ||
| image | C1 | C3 | C127⋊C3 | 
| kernel | C127⋊C3 | C127 | C1 | 
| # reps | 1 | 2 | 42 | 
Matrix representation of C127⋊C3 ►in GL3(𝔽2287) generated by
| 1160 | 1 | 0 | 
| 1396 | 0 | 1 | 
| 1 | 0 | 0 | 
| 1 | 126 | 1822 | 
| 0 | 313 | 1664 | 
| 0 | 1795 | 1973 | 
G:=sub<GL(3,GF(2287))| [1160,1396,1,1,0,0,0,1,0],[1,0,0,126,313,1795,1822,1664,1973] >;
C127⋊C3 in GAP, Magma, Sage, TeX
C_{127}\rtimes C_3 % in TeX
G:=Group("C127:C3"); // GroupNames label
G:=SmallGroup(381,1);
// by ID
G=gap.SmallGroup(381,1);
# by ID
G:=PCGroup([2,-3,-127,1285]);
// Polycyclic
G:=Group<a,b|a^127=b^3=1,b*a*b^-1=a^19>;
// generators/relations
Export