Copied to
clipboard

G = A4×C33order 396 = 22·32·11

Direct product of C33 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C33, (C2×C66)⋊C3, (C2×C6)⋊C33, (C2×C22)⋊C32, C22⋊(C3×C33), SmallGroup(396,24)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C33
C1C22C2×C22C11×A4 — A4×C33
C22 — A4×C33
C1C33

Generators and relations for A4×C33
 G = < a,b,c,d | a33=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

3C2
4C3
4C3
4C3
3C6
4C32
3C22
4C33
4C33
4C33
3C66
4C3×C33

Smallest permutation representation of A4×C33
On 132 points
Generators in S132
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 98)(13 99)(14 67)(15 68)(16 69)(17 70)(18 71)(19 72)(20 73)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 81)(29 82)(30 83)(31 84)(32 85)(33 86)(34 101)(35 102)(36 103)(37 104)(38 105)(39 106)(40 107)(41 108)(42 109)(43 110)(44 111)(45 112)(46 113)(47 114)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 121)(55 122)(56 123)(57 124)(58 125)(59 126)(60 127)(61 128)(62 129)(63 130)(64 131)(65 132)(66 100)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 34)(30 35)(31 36)(32 37)(33 38)(67 119)(68 120)(69 121)(70 122)(71 123)(72 124)(73 125)(74 126)(75 127)(76 128)(77 129)(78 130)(79 131)(80 132)(81 100)(82 101)(83 102)(84 103)(85 104)(86 105)(87 106)(88 107)(89 108)(90 109)(91 110)(92 111)(93 112)(94 113)(95 114)(96 115)(97 116)(98 117)(99 118)
(1 12 23)(2 13 24)(3 14 25)(4 15 26)(5 16 27)(6 17 28)(7 18 29)(8 19 30)(9 20 31)(10 21 32)(11 22 33)(34 112 71)(35 113 72)(36 114 73)(37 115 74)(38 116 75)(39 117 76)(40 118 77)(41 119 78)(42 120 79)(43 121 80)(44 122 81)(45 123 82)(46 124 83)(47 125 84)(48 126 85)(49 127 86)(50 128 87)(51 129 88)(52 130 89)(53 131 90)(54 132 91)(55 100 92)(56 101 93)(57 102 94)(58 103 95)(59 104 96)(60 105 97)(61 106 98)(62 107 99)(63 108 67)(64 109 68)(65 110 69)(66 111 70)

G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(43,110)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,128)(62,129)(63,130)(64,131)(65,132)(66,100), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,34)(30,35)(31,36)(32,37)(33,38)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132)(81,100)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114)(96,115)(97,116)(98,117)(99,118), (1,12,23)(2,13,24)(3,14,25)(4,15,26)(5,16,27)(6,17,28)(7,18,29)(8,19,30)(9,20,31)(10,21,32)(11,22,33)(34,112,71)(35,113,72)(36,114,73)(37,115,74)(38,116,75)(39,117,76)(40,118,77)(41,119,78)(42,120,79)(43,121,80)(44,122,81)(45,123,82)(46,124,83)(47,125,84)(48,126,85)(49,127,86)(50,128,87)(51,129,88)(52,130,89)(53,131,90)(54,132,91)(55,100,92)(56,101,93)(57,102,94)(58,103,95)(59,104,96)(60,105,97)(61,106,98)(62,107,99)(63,108,67)(64,109,68)(65,110,69)(66,111,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(43,110)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,128)(62,129)(63,130)(64,131)(65,132)(66,100), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,34)(30,35)(31,36)(32,37)(33,38)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132)(81,100)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114)(96,115)(97,116)(98,117)(99,118), (1,12,23)(2,13,24)(3,14,25)(4,15,26)(5,16,27)(6,17,28)(7,18,29)(8,19,30)(9,20,31)(10,21,32)(11,22,33)(34,112,71)(35,113,72)(36,114,73)(37,115,74)(38,116,75)(39,117,76)(40,118,77)(41,119,78)(42,120,79)(43,121,80)(44,122,81)(45,123,82)(46,124,83)(47,125,84)(48,126,85)(49,127,86)(50,128,87)(51,129,88)(52,130,89)(53,131,90)(54,132,91)(55,100,92)(56,101,93)(57,102,94)(58,103,95)(59,104,96)(60,105,97)(61,106,98)(62,107,99)(63,108,67)(64,109,68)(65,110,69)(66,111,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,98),(13,99),(14,67),(15,68),(16,69),(17,70),(18,71),(19,72),(20,73),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,81),(29,82),(30,83),(31,84),(32,85),(33,86),(34,101),(35,102),(36,103),(37,104),(38,105),(39,106),(40,107),(41,108),(42,109),(43,110),(44,111),(45,112),(46,113),(47,114),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,121),(55,122),(56,123),(57,124),(58,125),(59,126),(60,127),(61,128),(62,129),(63,130),(64,131),(65,132),(66,100)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,34),(30,35),(31,36),(32,37),(33,38),(67,119),(68,120),(69,121),(70,122),(71,123),(72,124),(73,125),(74,126),(75,127),(76,128),(77,129),(78,130),(79,131),(80,132),(81,100),(82,101),(83,102),(84,103),(85,104),(86,105),(87,106),(88,107),(89,108),(90,109),(91,110),(92,111),(93,112),(94,113),(95,114),(96,115),(97,116),(98,117),(99,118)], [(1,12,23),(2,13,24),(3,14,25),(4,15,26),(5,16,27),(6,17,28),(7,18,29),(8,19,30),(9,20,31),(10,21,32),(11,22,33),(34,112,71),(35,113,72),(36,114,73),(37,115,74),(38,116,75),(39,117,76),(40,118,77),(41,119,78),(42,120,79),(43,121,80),(44,122,81),(45,123,82),(46,124,83),(47,125,84),(48,126,85),(49,127,86),(50,128,87),(51,129,88),(52,130,89),(53,131,90),(54,132,91),(55,100,92),(56,101,93),(57,102,94),(58,103,95),(59,104,96),(60,105,97),(61,106,98),(62,107,99),(63,108,67),(64,109,68),(65,110,69),(66,111,70)]])

132 conjugacy classes

class 1  2 3A3B3C···3H6A6B11A···11J22A···22J33A···33T33U···33CB66A···66T
order12333···36611···1122···2233···3333···3366···66
size13114···4331···13···31···14···43···3

132 irreducible representations

dim1111113333
type++
imageC1C3C3C11C33C33A4C3×A4C11×A4A4×C33
kernelA4×C33C11×A4C2×C66C3×A4A4C2×C6C33C11C3C1
# reps162106020121020

Matrix representation of A4×C33 in GL4(𝔽67) generated by

29000
01400
00140
00014
,
1000
06600
06601
06610
,
1000
00166
01066
00066
,
29000
0010
0001
0100
G:=sub<GL(4,GF(67))| [29,0,0,0,0,14,0,0,0,0,14,0,0,0,0,14],[1,0,0,0,0,66,66,66,0,0,0,1,0,0,1,0],[1,0,0,0,0,0,1,0,0,1,0,0,0,66,66,66],[29,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

A4×C33 in GAP, Magma, Sage, TeX

A_4\times C_{33}
% in TeX

G:=Group("A4xC33");
// GroupNames label

G:=SmallGroup(396,24);
// by ID

G=gap.SmallGroup(396,24);
# by ID

G:=PCGroup([5,-3,-3,-11,-2,2,3963,7429]);
// Polycyclic

G:=Group<a,b,c,d|a^33=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of A4×C33 in TeX

׿
×
𝔽