Extensions 1→N→G→Q→1 with N=C5×D4 and Q=D5

Direct product G=N×Q with N=C5×D4 and Q=D5
dρLabelID
C5×D4×D5404C5xD4xD5400,185

Semidirect products G=N:Q with N=C5×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C5×D4)⋊1D5 = C527D8φ: D5/C5C2 ⊆ Out C5×D4200(C5xD4):1D5400,103
(C5×D4)⋊2D5 = D4×C5⋊D5φ: D5/C5C2 ⊆ Out C5×D4100(C5xD4):2D5400,195
(C5×D4)⋊3D5 = C20.D10φ: D5/C5C2 ⊆ Out C5×D4200(C5xD4):3D5400,196
(C5×D4)⋊4D5 = C5×D4⋊D5φ: D5/C5C2 ⊆ Out C5×D4404(C5xD4):4D5400,87
(C5×D4)⋊5D5 = C5×D42D5φ: trivial image404(C5xD4):5D5400,186

Non-split extensions G=N.Q with N=C5×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C5×D4).1D5 = D4.D25φ: D5/C5C2 ⊆ Out C5×D42004-(C5xD4).1D5400,15
(C5×D4).2D5 = D4⋊D25φ: D5/C5C2 ⊆ Out C5×D42004+(C5xD4).2D5400,16
(C5×D4).3D5 = D4×D25φ: D5/C5C2 ⊆ Out C5×D41004+(C5xD4).3D5400,39
(C5×D4).4D5 = D42D25φ: D5/C5C2 ⊆ Out C5×D42004-(C5xD4).4D5400,40
(C5×D4).5D5 = C528SD16φ: D5/C5C2 ⊆ Out C5×D4200(C5xD4).5D5400,104
(C5×D4).6D5 = C5×D4.D5φ: D5/C5C2 ⊆ Out C5×D4404(C5xD4).6D5400,88

׿
×
𝔽