metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊D25, C25⋊2D8, C50.8D4, C4.2D50, D100⋊2C2, C20.2D10, C100.2C22, C5.(D4⋊D5), C25⋊2C8⋊2C2, (D4×C25)⋊1C2, (C5×D4).2D5, C2.5(C25⋊D4), C10.15(C5⋊D4), SmallGroup(400,16)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊D25
G = < a,b,c,d | a4=b2=c25=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >
(1 88 46 64)(2 89 47 65)(3 90 48 66)(4 91 49 67)(5 92 50 68)(6 93 26 69)(7 94 27 70)(8 95 28 71)(9 96 29 72)(10 97 30 73)(11 98 31 74)(12 99 32 75)(13 100 33 51)(14 76 34 52)(15 77 35 53)(16 78 36 54)(17 79 37 55)(18 80 38 56)(19 81 39 57)(20 82 40 58)(21 83 41 59)(22 84 42 60)(23 85 43 61)(24 86 44 62)(25 87 45 63)(101 164 129 185)(102 165 130 186)(103 166 131 187)(104 167 132 188)(105 168 133 189)(106 169 134 190)(107 170 135 191)(108 171 136 192)(109 172 137 193)(110 173 138 194)(111 174 139 195)(112 175 140 196)(113 151 141 197)(114 152 142 198)(115 153 143 199)(116 154 144 200)(117 155 145 176)(118 156 146 177)(119 157 147 178)(120 158 148 179)(121 159 149 180)(122 160 150 181)(123 161 126 182)(124 162 127 183)(125 163 128 184)
(1 197)(2 198)(3 199)(4 200)(5 176)(6 177)(7 178)(8 179)(9 180)(10 181)(11 182)(12 183)(13 184)(14 185)(15 186)(16 187)(17 188)(18 189)(19 190)(20 191)(21 192)(22 193)(23 194)(24 195)(25 196)(26 156)(27 157)(28 158)(29 159)(30 160)(31 161)(32 162)(33 163)(34 164)(35 165)(36 166)(37 167)(38 168)(39 169)(40 170)(41 171)(42 172)(43 173)(44 174)(45 175)(46 151)(47 152)(48 153)(49 154)(50 155)(51 125)(52 101)(53 102)(54 103)(55 104)(56 105)(57 106)(58 107)(59 108)(60 109)(61 110)(62 111)(63 112)(64 113)(65 114)(66 115)(67 116)(68 117)(69 118)(70 119)(71 120)(72 121)(73 122)(74 123)(75 124)(76 129)(77 130)(78 131)(79 132)(80 133)(81 134)(82 135)(83 136)(84 137)(85 138)(86 139)(87 140)(88 141)(89 142)(90 143)(91 144)(92 145)(93 146)(94 147)(95 148)(96 149)(97 150)(98 126)(99 127)(100 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)(126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175)(176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(41 50)(42 49)(43 48)(44 47)(45 46)(51 100)(52 99)(53 98)(54 97)(55 96)(56 95)(57 94)(58 93)(59 92)(60 91)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(101 162)(102 161)(103 160)(104 159)(105 158)(106 157)(107 156)(108 155)(109 154)(110 153)(111 152)(112 151)(113 175)(114 174)(115 173)(116 172)(117 171)(118 170)(119 169)(120 168)(121 167)(122 166)(123 165)(124 164)(125 163)(126 186)(127 185)(128 184)(129 183)(130 182)(131 181)(132 180)(133 179)(134 178)(135 177)(136 176)(137 200)(138 199)(139 198)(140 197)(141 196)(142 195)(143 194)(144 193)(145 192)(146 191)(147 190)(148 189)(149 188)(150 187)
G:=sub<Sym(200)| (1,88,46,64)(2,89,47,65)(3,90,48,66)(4,91,49,67)(5,92,50,68)(6,93,26,69)(7,94,27,70)(8,95,28,71)(9,96,29,72)(10,97,30,73)(11,98,31,74)(12,99,32,75)(13,100,33,51)(14,76,34,52)(15,77,35,53)(16,78,36,54)(17,79,37,55)(18,80,38,56)(19,81,39,57)(20,82,40,58)(21,83,41,59)(22,84,42,60)(23,85,43,61)(24,86,44,62)(25,87,45,63)(101,164,129,185)(102,165,130,186)(103,166,131,187)(104,167,132,188)(105,168,133,189)(106,169,134,190)(107,170,135,191)(108,171,136,192)(109,172,137,193)(110,173,138,194)(111,174,139,195)(112,175,140,196)(113,151,141,197)(114,152,142,198)(115,153,143,199)(116,154,144,200)(117,155,145,176)(118,156,146,177)(119,157,147,178)(120,158,148,179)(121,159,149,180)(122,160,150,181)(123,161,126,182)(124,162,127,183)(125,163,128,184), (1,197)(2,198)(3,199)(4,200)(5,176)(6,177)(7,178)(8,179)(9,180)(10,181)(11,182)(12,183)(13,184)(14,185)(15,186)(16,187)(17,188)(18,189)(19,190)(20,191)(21,192)(22,193)(23,194)(24,195)(25,196)(26,156)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,169)(40,170)(41,171)(42,172)(43,173)(44,174)(45,175)(46,151)(47,152)(48,153)(49,154)(50,155)(51,125)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,113)(65,114)(66,115)(67,116)(68,117)(69,118)(70,119)(71,120)(72,121)(73,122)(74,123)(75,124)(76,129)(77,130)(78,131)(79,132)(80,133)(81,134)(82,135)(83,136)(84,137)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,126)(99,127)(100,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,50)(42,49)(43,48)(44,47)(45,46)(51,100)(52,99)(53,98)(54,97)(55,96)(56,95)(57,94)(58,93)(59,92)(60,91)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(101,162)(102,161)(103,160)(104,159)(105,158)(106,157)(107,156)(108,155)(109,154)(110,153)(111,152)(112,151)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)(121,167)(122,166)(123,165)(124,164)(125,163)(126,186)(127,185)(128,184)(129,183)(130,182)(131,181)(132,180)(133,179)(134,178)(135,177)(136,176)(137,200)(138,199)(139,198)(140,197)(141,196)(142,195)(143,194)(144,193)(145,192)(146,191)(147,190)(148,189)(149,188)(150,187)>;
G:=Group( (1,88,46,64)(2,89,47,65)(3,90,48,66)(4,91,49,67)(5,92,50,68)(6,93,26,69)(7,94,27,70)(8,95,28,71)(9,96,29,72)(10,97,30,73)(11,98,31,74)(12,99,32,75)(13,100,33,51)(14,76,34,52)(15,77,35,53)(16,78,36,54)(17,79,37,55)(18,80,38,56)(19,81,39,57)(20,82,40,58)(21,83,41,59)(22,84,42,60)(23,85,43,61)(24,86,44,62)(25,87,45,63)(101,164,129,185)(102,165,130,186)(103,166,131,187)(104,167,132,188)(105,168,133,189)(106,169,134,190)(107,170,135,191)(108,171,136,192)(109,172,137,193)(110,173,138,194)(111,174,139,195)(112,175,140,196)(113,151,141,197)(114,152,142,198)(115,153,143,199)(116,154,144,200)(117,155,145,176)(118,156,146,177)(119,157,147,178)(120,158,148,179)(121,159,149,180)(122,160,150,181)(123,161,126,182)(124,162,127,183)(125,163,128,184), (1,197)(2,198)(3,199)(4,200)(5,176)(6,177)(7,178)(8,179)(9,180)(10,181)(11,182)(12,183)(13,184)(14,185)(15,186)(16,187)(17,188)(18,189)(19,190)(20,191)(21,192)(22,193)(23,194)(24,195)(25,196)(26,156)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,169)(40,170)(41,171)(42,172)(43,173)(44,174)(45,175)(46,151)(47,152)(48,153)(49,154)(50,155)(51,125)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,113)(65,114)(66,115)(67,116)(68,117)(69,118)(70,119)(71,120)(72,121)(73,122)(74,123)(75,124)(76,129)(77,130)(78,131)(79,132)(80,133)(81,134)(82,135)(83,136)(84,137)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,126)(99,127)(100,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,50)(42,49)(43,48)(44,47)(45,46)(51,100)(52,99)(53,98)(54,97)(55,96)(56,95)(57,94)(58,93)(59,92)(60,91)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(101,162)(102,161)(103,160)(104,159)(105,158)(106,157)(107,156)(108,155)(109,154)(110,153)(111,152)(112,151)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)(121,167)(122,166)(123,165)(124,164)(125,163)(126,186)(127,185)(128,184)(129,183)(130,182)(131,181)(132,180)(133,179)(134,178)(135,177)(136,176)(137,200)(138,199)(139,198)(140,197)(141,196)(142,195)(143,194)(144,193)(145,192)(146,191)(147,190)(148,189)(149,188)(150,187) );
G=PermutationGroup([[(1,88,46,64),(2,89,47,65),(3,90,48,66),(4,91,49,67),(5,92,50,68),(6,93,26,69),(7,94,27,70),(8,95,28,71),(9,96,29,72),(10,97,30,73),(11,98,31,74),(12,99,32,75),(13,100,33,51),(14,76,34,52),(15,77,35,53),(16,78,36,54),(17,79,37,55),(18,80,38,56),(19,81,39,57),(20,82,40,58),(21,83,41,59),(22,84,42,60),(23,85,43,61),(24,86,44,62),(25,87,45,63),(101,164,129,185),(102,165,130,186),(103,166,131,187),(104,167,132,188),(105,168,133,189),(106,169,134,190),(107,170,135,191),(108,171,136,192),(109,172,137,193),(110,173,138,194),(111,174,139,195),(112,175,140,196),(113,151,141,197),(114,152,142,198),(115,153,143,199),(116,154,144,200),(117,155,145,176),(118,156,146,177),(119,157,147,178),(120,158,148,179),(121,159,149,180),(122,160,150,181),(123,161,126,182),(124,162,127,183),(125,163,128,184)], [(1,197),(2,198),(3,199),(4,200),(5,176),(6,177),(7,178),(8,179),(9,180),(10,181),(11,182),(12,183),(13,184),(14,185),(15,186),(16,187),(17,188),(18,189),(19,190),(20,191),(21,192),(22,193),(23,194),(24,195),(25,196),(26,156),(27,157),(28,158),(29,159),(30,160),(31,161),(32,162),(33,163),(34,164),(35,165),(36,166),(37,167),(38,168),(39,169),(40,170),(41,171),(42,172),(43,173),(44,174),(45,175),(46,151),(47,152),(48,153),(49,154),(50,155),(51,125),(52,101),(53,102),(54,103),(55,104),(56,105),(57,106),(58,107),(59,108),(60,109),(61,110),(62,111),(63,112),(64,113),(65,114),(66,115),(67,116),(68,117),(69,118),(70,119),(71,120),(72,121),(73,122),(74,123),(75,124),(76,129),(77,130),(78,131),(79,132),(80,133),(81,134),(82,135),(83,136),(84,137),(85,138),(86,139),(87,140),(88,141),(89,142),(90,143),(91,144),(92,145),(93,146),(94,147),(95,148),(96,149),(97,150),(98,126),(99,127),(100,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125),(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175),(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(41,50),(42,49),(43,48),(44,47),(45,46),(51,100),(52,99),(53,98),(54,97),(55,96),(56,95),(57,94),(58,93),(59,92),(60,91),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(101,162),(102,161),(103,160),(104,159),(105,158),(106,157),(107,156),(108,155),(109,154),(110,153),(111,152),(112,151),(113,175),(114,174),(115,173),(116,172),(117,171),(118,170),(119,169),(120,168),(121,167),(122,166),(123,165),(124,164),(125,163),(126,186),(127,185),(128,184),(129,183),(130,182),(131,181),(132,180),(133,179),(134,178),(135,177),(136,176),(137,200),(138,199),(139,198),(140,197),(141,196),(142,195),(143,194),(144,193),(145,192),(146,191),(147,190),(148,189),(149,188),(150,187)]])
67 conjugacy classes
| class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 25A | ··· | 25J | 50A | ··· | 50J | 50K | ··· | 50AD | 100A | ··· | 100J |
| order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 25 | ··· | 25 | 50 | ··· | 50 | 50 | ··· | 50 | 100 | ··· | 100 |
| size | 1 | 1 | 4 | 100 | 2 | 2 | 2 | 50 | 50 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
67 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | ||
| image | C1 | C2 | C2 | C2 | D4 | D5 | D8 | D10 | C5⋊D4 | D25 | D50 | C25⋊D4 | D4⋊D5 | D4⋊D25 |
| kernel | D4⋊D25 | C25⋊2C8 | D100 | D4×C25 | C50 | C5×D4 | C25 | C20 | C10 | D4 | C4 | C2 | C5 | C1 |
| # reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 10 | 10 | 20 | 2 | 10 |
Matrix representation of D4⋊D25 ►in GL4(𝔽401) generated by
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 287 |
| 0 | 0 | 197 | 400 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 348 | 214 |
| 0 | 0 | 193 | 53 |
| 266 | 9 | 0 | 0 |
| 392 | 60 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 274 | 311 | 0 | 0 |
| 99 | 127 | 0 | 0 |
| 0 | 0 | 400 | 114 |
| 0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(401))| [1,0,0,0,0,1,0,0,0,0,1,197,0,0,287,400],[1,0,0,0,0,1,0,0,0,0,348,193,0,0,214,53],[266,392,0,0,9,60,0,0,0,0,1,0,0,0,0,1],[274,99,0,0,311,127,0,0,0,0,400,0,0,0,114,1] >;
D4⋊D25 in GAP, Magma, Sage, TeX
D_4\rtimes D_{25} % in TeX
G:=Group("D4:D25"); // GroupNames label
G:=SmallGroup(400,16);
// by ID
G=gap.SmallGroup(400,16);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,73,218,116,50,4324,628,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^25=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export