Extensions 1→N→G→Q→1 with N=C5 and Q=C5×M4(2)

Direct product G=N×Q with N=C5 and Q=C5×M4(2)
dρLabelID
M4(2)×C52200M4(2)xC5^2400,112

Semidirect products G=N:Q with N=C5 and Q=C5×M4(2)
extensionφ:Q→Aut NdρLabelID
C51(C5×M4(2)) = C5×C4.F5φ: C5×M4(2)/C20C4 ⊆ Aut C5804C5:1(C5xM4(2))400,136
C52(C5×M4(2)) = C5×C22.F5φ: C5×M4(2)/C2×C10C4 ⊆ Aut C5404C5:2(C5xM4(2))400,140
C53(C5×M4(2)) = C5×C8⋊D5φ: C5×M4(2)/C40C2 ⊆ Aut C5802C5:3(C5xM4(2))400,77
C54(C5×M4(2)) = C5×C4.Dic5φ: C5×M4(2)/C2×C20C2 ⊆ Aut C5402C5:4(C5xM4(2))400,82

Non-split extensions G=N.Q with N=C5 and Q=C5×M4(2)
extensionφ:Q→Aut NdρLabelID
C5.(C5×M4(2)) = M4(2)×C25central extension (φ=1)2002C5.(C5xM4(2))400,24

׿
×
𝔽