Copied to
clipboard

G = C5×C4.F5order 400 = 24·52

Direct product of C5 and C4.F5

direct product, metacyclic, supersoluble, monomial

Aliases: C5×C4.F5, C20.1C20, C20.15F5, D10.3C20, C525M4(2), C5⋊C81C10, C4.(C5×F5), (C5×C20).2C4, C2.4(C10×F5), C10.2(C2×C20), (D5×C10).9C4, (C4×D5).3C10, (D5×C20).8C2, C51(C5×M4(2)), C10.43(C2×F5), Dic5.6(C2×C10), (C5×Dic5).11C22, (C5×C5⋊C8)⋊5C2, (C5×C10).14(C2×C4), SmallGroup(400,136)

Series: Derived Chief Lower central Upper central

C1C10 — C5×C4.F5
C1C5C10Dic5C5×Dic5C5×C5⋊C8 — C5×C4.F5
C5C10 — C5×C4.F5
C1C10C20

Generators and relations for C5×C4.F5
 G = < a,b,c,d | a5=b4=c5=1, d4=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

10C2
4C5
5C4
5C22
2D5
4C10
10C10
5C2×C4
5C8
5C8
4C20
5C20
5C2×C10
2C5×D5
5M4(2)
5C40
5C2×C20
5C40
5C5×M4(2)

Smallest permutation representation of C5×C4.F5
On 80 points
Generators in S80
(1 21 75 33 57)(2 22 76 34 58)(3 23 77 35 59)(4 24 78 36 60)(5 17 79 37 61)(6 18 80 38 62)(7 19 73 39 63)(8 20 74 40 64)(9 29 45 53 71)(10 30 46 54 72)(11 31 47 55 65)(12 32 48 56 66)(13 25 41 49 67)(14 26 42 50 68)(15 27 43 51 69)(16 28 44 52 70)
(1 69 5 65)(2 66 6 70)(3 71 7 67)(4 68 8 72)(9 19 13 23)(10 24 14 20)(11 21 15 17)(12 18 16 22)(25 77 29 73)(26 74 30 78)(27 79 31 75)(28 76 32 80)(33 43 37 47)(34 48 38 44)(35 45 39 41)(36 42 40 46)(49 59 53 63)(50 64 54 60)(51 61 55 57)(52 58 56 62)
(1 57 33 75 21)(2 76 58 22 34)(3 23 77 35 59)(4 36 24 60 78)(5 61 37 79 17)(6 80 62 18 38)(7 19 73 39 63)(8 40 20 64 74)(9 29 45 53 71)(10 54 30 72 46)(11 65 55 47 31)(12 48 66 32 56)(13 25 41 49 67)(14 50 26 68 42)(15 69 51 43 27)(16 44 70 28 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,21,75,33,57)(2,22,76,34,58)(3,23,77,35,59)(4,24,78,36,60)(5,17,79,37,61)(6,18,80,38,62)(7,19,73,39,63)(8,20,74,40,64)(9,29,45,53,71)(10,30,46,54,72)(11,31,47,55,65)(12,32,48,56,66)(13,25,41,49,67)(14,26,42,50,68)(15,27,43,51,69)(16,28,44,52,70), (1,69,5,65)(2,66,6,70)(3,71,7,67)(4,68,8,72)(9,19,13,23)(10,24,14,20)(11,21,15,17)(12,18,16,22)(25,77,29,73)(26,74,30,78)(27,79,31,75)(28,76,32,80)(33,43,37,47)(34,48,38,44)(35,45,39,41)(36,42,40,46)(49,59,53,63)(50,64,54,60)(51,61,55,57)(52,58,56,62), (1,57,33,75,21)(2,76,58,22,34)(3,23,77,35,59)(4,36,24,60,78)(5,61,37,79,17)(6,80,62,18,38)(7,19,73,39,63)(8,40,20,64,74)(9,29,45,53,71)(10,54,30,72,46)(11,65,55,47,31)(12,48,66,32,56)(13,25,41,49,67)(14,50,26,68,42)(15,69,51,43,27)(16,44,70,28,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,21,75,33,57)(2,22,76,34,58)(3,23,77,35,59)(4,24,78,36,60)(5,17,79,37,61)(6,18,80,38,62)(7,19,73,39,63)(8,20,74,40,64)(9,29,45,53,71)(10,30,46,54,72)(11,31,47,55,65)(12,32,48,56,66)(13,25,41,49,67)(14,26,42,50,68)(15,27,43,51,69)(16,28,44,52,70), (1,69,5,65)(2,66,6,70)(3,71,7,67)(4,68,8,72)(9,19,13,23)(10,24,14,20)(11,21,15,17)(12,18,16,22)(25,77,29,73)(26,74,30,78)(27,79,31,75)(28,76,32,80)(33,43,37,47)(34,48,38,44)(35,45,39,41)(36,42,40,46)(49,59,53,63)(50,64,54,60)(51,61,55,57)(52,58,56,62), (1,57,33,75,21)(2,76,58,22,34)(3,23,77,35,59)(4,36,24,60,78)(5,61,37,79,17)(6,80,62,18,38)(7,19,73,39,63)(8,40,20,64,74)(9,29,45,53,71)(10,54,30,72,46)(11,65,55,47,31)(12,48,66,32,56)(13,25,41,49,67)(14,50,26,68,42)(15,69,51,43,27)(16,44,70,28,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,21,75,33,57),(2,22,76,34,58),(3,23,77,35,59),(4,24,78,36,60),(5,17,79,37,61),(6,18,80,38,62),(7,19,73,39,63),(8,20,74,40,64),(9,29,45,53,71),(10,30,46,54,72),(11,31,47,55,65),(12,32,48,56,66),(13,25,41,49,67),(14,26,42,50,68),(15,27,43,51,69),(16,28,44,52,70)], [(1,69,5,65),(2,66,6,70),(3,71,7,67),(4,68,8,72),(9,19,13,23),(10,24,14,20),(11,21,15,17),(12,18,16,22),(25,77,29,73),(26,74,30,78),(27,79,31,75),(28,76,32,80),(33,43,37,47),(34,48,38,44),(35,45,39,41),(36,42,40,46),(49,59,53,63),(50,64,54,60),(51,61,55,57),(52,58,56,62)], [(1,57,33,75,21),(2,76,58,22,34),(3,23,77,35,59),(4,36,24,60,78),(5,61,37,79,17),(6,80,62,18,38),(7,19,73,39,63),(8,40,20,64,74),(9,29,45,53,71),(10,54,30,72,46),(11,65,55,47,31),(12,48,66,32,56),(13,25,41,49,67),(14,50,26,68,42),(15,69,51,43,27),(16,44,70,28,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

70 conjugacy classes

class 1 2A2B4A4B4C5A5B5C5D5E···5I8A8B8C8D10A10B10C10D10E···10I10J10K10L10M20A20B20C20D20E···20N20O···20V40A···40P
order12244455555···588881010101010···10101010102020202020···2020···2040···40
size111025511114···41010101011114···41010101022224···45···510···10

70 irreducible representations

dim111111111122444444
type+++++
imageC1C2C2C4C4C5C10C10C20C20M4(2)C5×M4(2)F5C2×F5C4.F5C5×F5C10×F5C5×C4.F5
kernelC5×C4.F5C5×C5⋊C8D5×C20C5×C20D5×C10C4.F5C5⋊C8C4×D5C20D10C52C5C20C10C5C4C2C1
# reps121224848828112448

Matrix representation of C5×C4.F5 in GL6(𝔽41)

1600000
0160000
0016000
0001600
0000160
0000016
,
32120000
090000
0040000
0004000
0000400
0000040
,
100000
010000
0018000
00241600
00230370
00270010
,
14360000
21270000
00400170
0000401
000110
000010

G:=sub<GL(6,GF(41))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[32,0,0,0,0,0,12,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,24,23,27,0,0,0,16,0,0,0,0,0,0,37,0,0,0,0,0,0,10],[14,21,0,0,0,0,36,27,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,17,40,1,1,0,0,0,1,0,0] >;

C5×C4.F5 in GAP, Magma, Sage, TeX

C_5\times C_4.F_5
% in TeX

G:=Group("C5xC4.F5");
// GroupNames label

G:=SmallGroup(400,136);
// by ID

G=gap.SmallGroup(400,136);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-5,120,505,247,69,5765,599]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C5×C4.F5 in TeX

׿
×
𝔽