Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D25

Direct product G=N×Q with N=C2×C4 and Q=D25
dρLabelID
C2×C4×D25200C2xC4xD25400,36

Semidirect products G=N:Q with N=C2×C4 and Q=D25
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D25 = D50⋊C4φ: D25/C25C2 ⊆ Aut C2×C4200(C2xC4):1D25400,14
(C2×C4)⋊2D25 = C2×D100φ: D25/C25C2 ⊆ Aut C2×C4200(C2xC4):2D25400,37
(C2×C4)⋊3D25 = D1005C2φ: D25/C25C2 ⊆ Aut C2×C42002(C2xC4):3D25400,38

Non-split extensions G=N.Q with N=C2×C4 and Q=D25
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D25 = C50.D4φ: D25/C25C2 ⊆ Aut C2×C4400(C2xC4).1D25400,12
(C2×C4).2D25 = C4.Dic25φ: D25/C25C2 ⊆ Aut C2×C42002(C2xC4).2D25400,10
(C2×C4).3D25 = C4⋊Dic25φ: D25/C25C2 ⊆ Aut C2×C4400(C2xC4).3D25400,13
(C2×C4).4D25 = C2×Dic50φ: D25/C25C2 ⊆ Aut C2×C4400(C2xC4).4D25400,35
(C2×C4).5D25 = C2×C252C8central extension (φ=1)400(C2xC4).5D25400,9
(C2×C4).6D25 = C4×Dic25central extension (φ=1)400(C2xC4).6D25400,11

׿
×
𝔽