direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C4×D25, C100⋊3C22, C20.55D10, C50.2C23, C22.9D50, D50.8C22, Dic25⋊3C22, C50⋊2(C2×C4), (C2×C100)⋊5C2, C25⋊2(C22×C4), (C2×C20).15D5, C10.17(C4×D5), (C2×Dic25)⋊5C2, (C2×C10).24D10, (C2×C50).9C22, C2.1(C22×D25), (C22×D25).4C2, C10.20(C22×D5), C5.(C2×C4×D5), SmallGroup(400,36)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — C2×C4×D25 |
Generators and relations for C2×C4×D25
G = < a,b,c,d | a2=b4=c25=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 613 in 81 conjugacy classes, 43 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C23, D5, C10, C10, C22×C4, Dic5, C20, D10, C2×C10, C25, C4×D5, C2×Dic5, C2×C20, C22×D5, D25, C50, C50, C2×C4×D5, Dic25, C100, D50, C2×C50, C4×D25, C2×Dic25, C2×C100, C22×D25, C2×C4×D25
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, D10, C4×D5, C22×D5, D25, C2×C4×D5, D50, C4×D25, C22×D25, C2×C4×D25
(1 110)(2 111)(3 112)(4 113)(5 114)(6 115)(7 116)(8 117)(9 118)(10 119)(11 120)(12 121)(13 122)(14 123)(15 124)(16 125)(17 101)(18 102)(19 103)(20 104)(21 105)(22 106)(23 107)(24 108)(25 109)(26 138)(27 139)(28 140)(29 141)(30 142)(31 143)(32 144)(33 145)(34 146)(35 147)(36 148)(37 149)(38 150)(39 126)(40 127)(41 128)(42 129)(43 130)(44 131)(45 132)(46 133)(47 134)(48 135)(49 136)(50 137)(51 172)(52 173)(53 174)(54 175)(55 151)(56 152)(57 153)(58 154)(59 155)(60 156)(61 157)(62 158)(63 159)(64 160)(65 161)(66 162)(67 163)(68 164)(69 165)(70 166)(71 167)(72 168)(73 169)(74 170)(75 171)(76 176)(77 177)(78 178)(79 179)(80 180)(81 181)(82 182)(83 183)(84 184)(85 185)(86 186)(87 187)(88 188)(89 189)(90 190)(91 191)(92 192)(93 193)(94 194)(95 195)(96 196)(97 197)(98 198)(99 199)(100 200)
(1 77 35 52)(2 78 36 53)(3 79 37 54)(4 80 38 55)(5 81 39 56)(6 82 40 57)(7 83 41 58)(8 84 42 59)(9 85 43 60)(10 86 44 61)(11 87 45 62)(12 88 46 63)(13 89 47 64)(14 90 48 65)(15 91 49 66)(16 92 50 67)(17 93 26 68)(18 94 27 69)(19 95 28 70)(20 96 29 71)(21 97 30 72)(22 98 31 73)(23 99 32 74)(24 100 33 75)(25 76 34 51)(101 193 138 164)(102 194 139 165)(103 195 140 166)(104 196 141 167)(105 197 142 168)(106 198 143 169)(107 199 144 170)(108 200 145 171)(109 176 146 172)(110 177 147 173)(111 178 148 174)(112 179 149 175)(113 180 150 151)(114 181 126 152)(115 182 127 153)(116 183 128 154)(117 184 129 155)(118 185 130 156)(119 186 131 157)(120 187 132 158)(121 188 133 159)(122 189 134 160)(123 190 135 161)(124 191 136 162)(125 192 137 163)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)(126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175)(176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(44 50)(45 49)(46 48)(51 52)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)(76 77)(78 100)(79 99)(80 98)(81 97)(82 96)(83 95)(84 94)(85 93)(86 92)(87 91)(88 90)(101 118)(102 117)(103 116)(104 115)(105 114)(106 113)(107 112)(108 111)(109 110)(119 125)(120 124)(121 123)(126 142)(127 141)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)(143 150)(144 149)(145 148)(146 147)(151 169)(152 168)(153 167)(154 166)(155 165)(156 164)(157 163)(158 162)(159 161)(170 175)(171 174)(172 173)(176 177)(178 200)(179 199)(180 198)(181 197)(182 196)(183 195)(184 194)(185 193)(186 192)(187 191)(188 190)
G:=sub<Sym(200)| (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,121)(13,122)(14,123)(15,124)(16,125)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,172)(52,173)(53,174)(54,175)(55,151)(56,152)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,167)(72,168)(73,169)(74,170)(75,171)(76,176)(77,177)(78,178)(79,179)(80,180)(81,181)(82,182)(83,183)(84,184)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,197)(98,198)(99,199)(100,200), (1,77,35,52)(2,78,36,53)(3,79,37,54)(4,80,38,55)(5,81,39,56)(6,82,40,57)(7,83,41,58)(8,84,42,59)(9,85,43,60)(10,86,44,61)(11,87,45,62)(12,88,46,63)(13,89,47,64)(14,90,48,65)(15,91,49,66)(16,92,50,67)(17,93,26,68)(18,94,27,69)(19,95,28,70)(20,96,29,71)(21,97,30,72)(22,98,31,73)(23,99,32,74)(24,100,33,75)(25,76,34,51)(101,193,138,164)(102,194,139,165)(103,195,140,166)(104,196,141,167)(105,197,142,168)(106,198,143,169)(107,199,144,170)(108,200,145,171)(109,176,146,172)(110,177,147,173)(111,178,148,174)(112,179,149,175)(113,180,150,151)(114,181,126,152)(115,182,127,153)(116,183,128,154)(117,184,129,155)(118,185,130,156)(119,186,131,157)(120,187,132,158)(121,188,133,159)(122,189,134,160)(123,190,135,161)(124,191,136,162)(125,192,137,163), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(44,50)(45,49)(46,48)(51,52)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(76,77)(78,100)(79,99)(80,98)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(119,125)(120,124)(121,123)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(143,150)(144,149)(145,148)(146,147)(151,169)(152,168)(153,167)(154,166)(155,165)(156,164)(157,163)(158,162)(159,161)(170,175)(171,174)(172,173)(176,177)(178,200)(179,199)(180,198)(181,197)(182,196)(183,195)(184,194)(185,193)(186,192)(187,191)(188,190)>;
G:=Group( (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,121)(13,122)(14,123)(15,124)(16,125)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,148)(37,149)(38,150)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,172)(52,173)(53,174)(54,175)(55,151)(56,152)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,167)(72,168)(73,169)(74,170)(75,171)(76,176)(77,177)(78,178)(79,179)(80,180)(81,181)(82,182)(83,183)(84,184)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,197)(98,198)(99,199)(100,200), (1,77,35,52)(2,78,36,53)(3,79,37,54)(4,80,38,55)(5,81,39,56)(6,82,40,57)(7,83,41,58)(8,84,42,59)(9,85,43,60)(10,86,44,61)(11,87,45,62)(12,88,46,63)(13,89,47,64)(14,90,48,65)(15,91,49,66)(16,92,50,67)(17,93,26,68)(18,94,27,69)(19,95,28,70)(20,96,29,71)(21,97,30,72)(22,98,31,73)(23,99,32,74)(24,100,33,75)(25,76,34,51)(101,193,138,164)(102,194,139,165)(103,195,140,166)(104,196,141,167)(105,197,142,168)(106,198,143,169)(107,199,144,170)(108,200,145,171)(109,176,146,172)(110,177,147,173)(111,178,148,174)(112,179,149,175)(113,180,150,151)(114,181,126,152)(115,182,127,153)(116,183,128,154)(117,184,129,155)(118,185,130,156)(119,186,131,157)(120,187,132,158)(121,188,133,159)(122,189,134,160)(123,190,135,161)(124,191,136,162)(125,192,137,163), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(44,50)(45,49)(46,48)(51,52)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(76,77)(78,100)(79,99)(80,98)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(119,125)(120,124)(121,123)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(143,150)(144,149)(145,148)(146,147)(151,169)(152,168)(153,167)(154,166)(155,165)(156,164)(157,163)(158,162)(159,161)(170,175)(171,174)(172,173)(176,177)(178,200)(179,199)(180,198)(181,197)(182,196)(183,195)(184,194)(185,193)(186,192)(187,191)(188,190) );
G=PermutationGroup([[(1,110),(2,111),(3,112),(4,113),(5,114),(6,115),(7,116),(8,117),(9,118),(10,119),(11,120),(12,121),(13,122),(14,123),(15,124),(16,125),(17,101),(18,102),(19,103),(20,104),(21,105),(22,106),(23,107),(24,108),(25,109),(26,138),(27,139),(28,140),(29,141),(30,142),(31,143),(32,144),(33,145),(34,146),(35,147),(36,148),(37,149),(38,150),(39,126),(40,127),(41,128),(42,129),(43,130),(44,131),(45,132),(46,133),(47,134),(48,135),(49,136),(50,137),(51,172),(52,173),(53,174),(54,175),(55,151),(56,152),(57,153),(58,154),(59,155),(60,156),(61,157),(62,158),(63,159),(64,160),(65,161),(66,162),(67,163),(68,164),(69,165),(70,166),(71,167),(72,168),(73,169),(74,170),(75,171),(76,176),(77,177),(78,178),(79,179),(80,180),(81,181),(82,182),(83,183),(84,184),(85,185),(86,186),(87,187),(88,188),(89,189),(90,190),(91,191),(92,192),(93,193),(94,194),(95,195),(96,196),(97,197),(98,198),(99,199),(100,200)], [(1,77,35,52),(2,78,36,53),(3,79,37,54),(4,80,38,55),(5,81,39,56),(6,82,40,57),(7,83,41,58),(8,84,42,59),(9,85,43,60),(10,86,44,61),(11,87,45,62),(12,88,46,63),(13,89,47,64),(14,90,48,65),(15,91,49,66),(16,92,50,67),(17,93,26,68),(18,94,27,69),(19,95,28,70),(20,96,29,71),(21,97,30,72),(22,98,31,73),(23,99,32,74),(24,100,33,75),(25,76,34,51),(101,193,138,164),(102,194,139,165),(103,195,140,166),(104,196,141,167),(105,197,142,168),(106,198,143,169),(107,199,144,170),(108,200,145,171),(109,176,146,172),(110,177,147,173),(111,178,148,174),(112,179,149,175),(113,180,150,151),(114,181,126,152),(115,182,127,153),(116,183,128,154),(117,184,129,155),(118,185,130,156),(119,186,131,157),(120,187,132,158),(121,188,133,159),(122,189,134,160),(123,190,135,161),(124,191,136,162),(125,192,137,163)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125),(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175),(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(44,50),(45,49),(46,48),(51,52),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65),(76,77),(78,100),(79,99),(80,98),(81,97),(82,96),(83,95),(84,94),(85,93),(86,92),(87,91),(88,90),(101,118),(102,117),(103,116),(104,115),(105,114),(106,113),(107,112),(108,111),(109,110),(119,125),(120,124),(121,123),(126,142),(127,141),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135),(143,150),(144,149),(145,148),(146,147),(151,169),(152,168),(153,167),(154,166),(155,165),(156,164),(157,163),(158,162),(159,161),(170,175),(171,174),(172,173),(176,177),(178,200),(179,199),(180,198),(181,197),(182,196),(183,195),(184,194),(185,193),(186,192),(187,191),(188,190)]])
112 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20H | 25A | ··· | 25J | 50A | ··· | 50AD | 100A | ··· | 100AN |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 25 | ··· | 25 | 50 | ··· | 50 | 100 | ··· | 100 |
size | 1 | 1 | 1 | 1 | 25 | 25 | 25 | 25 | 1 | 1 | 1 | 1 | 25 | 25 | 25 | 25 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
112 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | D5 | D10 | D10 | C4×D5 | D25 | D50 | D50 | C4×D25 |
kernel | C2×C4×D25 | C4×D25 | C2×Dic25 | C2×C100 | C22×D25 | D50 | C2×C20 | C20 | C2×C10 | C10 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 2 | 4 | 2 | 8 | 10 | 20 | 10 | 40 |
Matrix representation of C2×C4×D25 ►in GL4(𝔽101) generated by
100 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 91 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 46 | 52 |
0 | 0 | 49 | 62 |
100 | 0 | 0 | 0 |
0 | 100 | 0 | 0 |
0 | 0 | 46 | 52 |
0 | 0 | 4 | 55 |
G:=sub<GL(4,GF(101))| [100,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,91,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,46,49,0,0,52,62],[100,0,0,0,0,100,0,0,0,0,46,4,0,0,52,55] >;
C2×C4×D25 in GAP, Magma, Sage, TeX
C_2\times C_4\times D_{25}
% in TeX
G:=Group("C2xC4xD25");
// GroupNames label
G:=SmallGroup(400,36);
// by ID
G=gap.SmallGroup(400,36);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,50,4324,628,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^25=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations