Extensions 1→N→G→Q→1 with N=C5×D20 and Q=C2

Direct product G=N×Q with N=C5×D20 and Q=C2
dρLabelID
C10×D2080C10xD20400,183

Semidirect products G=N:Q with N=C5×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D20)⋊1C2 = C522D8φ: C2/C1C2 ⊆ Out C5×D20804(C5xD20):1C2400,64
(C5×D20)⋊2C2 = C5⋊D40φ: C2/C1C2 ⊆ Out C5×D20404+(C5xD20):2C2400,65
(C5×D20)⋊3C2 = C5×D4⋊D5φ: C2/C1C2 ⊆ Out C5×D20404(C5xD20):3C2400,87
(C5×D20)⋊4C2 = D205D5φ: C2/C1C2 ⊆ Out C5×D20804-(C5xD20):4C2400,164
(C5×D20)⋊5C2 = D20⋊D5φ: C2/C1C2 ⊆ Out C5×D20404(C5xD20):5C2400,165
(C5×D20)⋊6C2 = D5×D20φ: C2/C1C2 ⊆ Out C5×D20404+(C5xD20):6C2400,170
(C5×D20)⋊7C2 = C20⋊D10φ: C2/C1C2 ⊆ Out C5×D20404(C5xD20):7C2400,171
(C5×D20)⋊8C2 = C5×D4×D5φ: C2/C1C2 ⊆ Out C5×D20404(C5xD20):8C2400,185
(C5×D20)⋊9C2 = C5×Q82D5φ: C2/C1C2 ⊆ Out C5×D20804(C5xD20):9C2400,188
(C5×D20)⋊10C2 = C5×D40φ: C2/C1C2 ⊆ Out C5×D20802(C5xD20):10C2400,79
(C5×D20)⋊11C2 = C5×C4○D20φ: trivial image402(C5xD20):11C2400,184

Non-split extensions G=N.Q with N=C5×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×D20).1C2 = D20.D5φ: C2/C1C2 ⊆ Out C5×D20804(C5xD20).1C2400,66
(C5×D20).2C2 = C523SD16φ: C2/C1C2 ⊆ Out C5×D20804-(C5xD20).2C2400,67
(C5×D20).3C2 = C5×Q8⋊D5φ: C2/C1C2 ⊆ Out C5×D20804(C5xD20).3C2400,89
(C5×D20).4C2 = C5×C40⋊C2φ: C2/C1C2 ⊆ Out C5×D20802(C5xD20).4C2400,78

׿
×
𝔽