Copied to
clipboard

G = D20⋊D5order 400 = 24·52

3rd semidirect product of D20 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial

Aliases: D203D5, Dic103D5, D10.2D10, C20.22D10, Dic5.1D10, C4.11D52, (C5×D20)⋊5C2, C5⋊D203C2, (D5×Dic5)⋊1C2, C523(C4○D4), C51(D42D5), C52(Q82D5), (C5×Dic10)⋊5C2, (C5×C10).3C23, C10.3(C22×D5), (C5×C20).18C22, (D5×C10).2C22, C526C4.9C22, (C5×Dic5).2C22, C2.6(C2×D52), (C4×C5⋊D5)⋊1C2, (C2×C5⋊D5).12C22, SmallGroup(400,165)

Series: Derived Chief Lower central Upper central

C1C5×C10 — D20⋊D5
C1C5C52C5×C10D5×C10D5×Dic5 — D20⋊D5
C52C5×C10 — D20⋊D5
C1C2C4

Generators and relations for D20⋊D5
 G = < a,b,c,d | a20=b2=c5=d2=1, bab=a-1, ac=ca, dad=a9, bc=cb, dbd=a18b, dcd=c-1 >

Subgroups: 604 in 96 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2×C4, D4, Q8, D5, C10, C10, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C52, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C5×D4, C5×Q8, C5×D5, C5⋊D5, C5×C10, D42D5, Q82D5, C5×Dic5, C526C4, C5×C20, D5×C10, C2×C5⋊D5, D5×Dic5, C5⋊D20, C5×Dic10, C5×D20, C4×C5⋊D5, D20⋊D5
Quotients: C1, C2, C22, C23, D5, C4○D4, D10, C22×D5, D42D5, Q82D5, D52, C2×D52, D20⋊D5

Smallest permutation representation of D20⋊D5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 38)(2 37)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)(16 23)(17 22)(18 21)(19 40)(20 39)
(1 17 13 9 5)(2 18 14 10 6)(3 19 15 11 7)(4 20 16 12 8)(21 25 29 33 37)(22 26 30 34 38)(23 27 31 35 39)(24 28 32 36 40)
(1 5)(2 14)(4 12)(6 10)(7 19)(9 17)(11 15)(16 20)(21 23)(22 32)(24 30)(25 39)(26 28)(27 37)(29 35)(31 33)(34 40)(36 38)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,40)(20,39), (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)(21,25,29,33,37)(22,26,30,34,38)(23,27,31,35,39)(24,28,32,36,40), (1,5)(2,14)(4,12)(6,10)(7,19)(9,17)(11,15)(16,20)(21,23)(22,32)(24,30)(25,39)(26,28)(27,37)(29,35)(31,33)(34,40)(36,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,40)(20,39), (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)(21,25,29,33,37)(22,26,30,34,38)(23,27,31,35,39)(24,28,32,36,40), (1,5)(2,14)(4,12)(6,10)(7,19)(9,17)(11,15)(16,20)(21,23)(22,32)(24,30)(25,39)(26,28)(27,37)(29,35)(31,33)(34,40)(36,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,38),(2,37),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24),(16,23),(17,22),(18,21),(19,40),(20,39)], [(1,17,13,9,5),(2,18,14,10,6),(3,19,15,11,7),(4,20,16,12,8),(21,25,29,33,37),(22,26,30,34,38),(23,27,31,35,39),(24,28,32,36,40)], [(1,5),(2,14),(4,12),(6,10),(7,19),(9,17),(11,15),(16,20),(21,23),(22,32),(24,30),(25,39),(26,28),(27,37),(29,35),(31,33),(34,40),(36,38)]])

46 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H10I10J10K10L20A···20L20M20N20O20P
order12222444445555555510101010101010101010101020···2020202020
size111010502101025252222444422224444202020204···420202020

46 irreducible representations

dim11111122222244444
type+++++++++++-+++
imageC1C2C2C2C2C2D5D5C4○D4D10D10D10D42D5Q82D5D52C2×D52D20⋊D5
kernelD20⋊D5D5×Dic5C5⋊D20C5×Dic10C5×D20C4×C5⋊D5Dic10D20C52Dic5C20D10C5C5C4C2C1
# reps12211122244422448

Matrix representation of D20⋊D5 in GL6(𝔽41)

3200000
090000
001000
000100
0000351
0000400
,
010000
100000
0040000
0004000
0000351
000066
,
100000
010000
0004000
0013400
000010
000001
,
100000
0400000
0013400
0004000
000010
0000640

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,40,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,6,0,0,0,0,1,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,34,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40] >;

D20⋊D5 in GAP, Magma, Sage, TeX

D_{20}\rtimes D_5
% in TeX

G:=Group("D20:D5");
// GroupNames label

G:=SmallGroup(400,165);
// by ID

G=gap.SmallGroup(400,165);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,55,218,116,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽