Extensions 1→N→G→Q→1 with N=C2×Dic25 and Q=C2

Direct product G=N×Q with N=C2×Dic25 and Q=C2
dρLabelID
C22×Dic25400C2^2xDic25400,43

Semidirect products G=N:Q with N=C2×Dic25 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic25)⋊1C2 = D50⋊C4φ: C2/C1C2 ⊆ Out C2×Dic25200(C2xDic25):1C2400,14
(C2×Dic25)⋊2C2 = C23.D25φ: C2/C1C2 ⊆ Out C2×Dic25200(C2xDic25):2C2400,19
(C2×Dic25)⋊3C2 = D42D25φ: C2/C1C2 ⊆ Out C2×Dic252004-(C2xDic25):3C2400,40
(C2×Dic25)⋊4C2 = C2×C25⋊D4φ: C2/C1C2 ⊆ Out C2×Dic25200(C2xDic25):4C2400,44
(C2×Dic25)⋊5C2 = C2×C4×D25φ: trivial image200(C2xDic25):5C2400,36

Non-split extensions G=N.Q with N=C2×Dic25 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic25).1C2 = C50.D4φ: C2/C1C2 ⊆ Out C2×Dic25400(C2xDic25).1C2400,12
(C2×Dic25).2C2 = C4⋊Dic25φ: C2/C1C2 ⊆ Out C2×Dic25400(C2xDic25).2C2400,13
(C2×Dic25).3C2 = C2×Dic50φ: C2/C1C2 ⊆ Out C2×Dic25400(C2xDic25).3C2400,35
(C2×Dic25).4C2 = C2×C25⋊C8φ: C2/C1C2 ⊆ Out C2×Dic25400(C2xDic25).4C2400,32
(C2×Dic25).5C2 = C25⋊M4(2)φ: C2/C1C2 ⊆ Out C2×Dic252004-(C2xDic25).5C2400,33
(C2×Dic25).6C2 = C4×Dic25φ: trivial image400(C2xDic25).6C2400,11

׿
×
𝔽